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Abstract

In this paper, we establish some sharp Sobolev trace inequalities on n-dimensional, compact
Riemannian manifolds with smooth boundaries. More specifically, let

q = 2(n − 1)/(n − 2) ,
1
S

= inf

{∫
R

n
+

|∇u|2 : ∇u ∈ L2(Rn
+) ,

∫
∂R

n
+

|u|q = 1

}
.

We establish for any Riemannian manifold with a smooth boundary, denoted as (M, g), that
there exists some constant A = A(M, g) > 0, (

∫
∂M

|u|q dsg)2/q ≤ S
∫

M
|∇gu|2 dvg +

A
∫

∂M
u2 dsg, for all u ∈ H1(M). The inequality is sharp in the sense that the inequality is

false when S is replaced by any smaller number. c© 1997 John Wiley & Sons, Inc.

0 Introduction

It is well-known that sharp Sobolev-type inequalities are important in the study
of partial differential equations, especially those that arise in geometry and
physics. There has been much work on such inequalities and their applications
(see, for example, Trudinger [35], Moser [30], Aubin [3], Talenti [34], Lieb
[27, 28], Brezis-Nirenberg [9], Cherrier [13], Brezis-Lieb [8], Carleson-Chang
[11], Escobar [14, 16], Beckner [6], Adimurthi and Yadava [1], Hebey and
Vaugon [21, 20], Hebey [19], and the references therein).

For n ≥ 3, it was shown by Aubin [3] and Talenti [34] that, for p =
2n/(n − 2),

1
S1

= inf
{ ∫

Rn |∇u|2

(
∫

Rn |u|p)2/p

∣∣∣∣u ∈ Lp(Rn) \ {0}, ∇u ∈ L2(Rn)
}

is achieved and the extremal functions are found. In particular,

1
S1

= πn(n − 2)
(

Γ(n/2)
Γ(n)

)2/n

.(A)
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It was shown by P. L. Lions [29] that, for q = 2(n − 1)/(n − 2),

1
S

= inf

{ ∫
Rn

+
|∇u|2

(
∫
∂Rn

+
|u|q)2/q

∣∣∣∣∇u ∈ L2(Rn
+), u ∈ Lq(∂R

n
+) \ {0}

}
(0.1)

is achieved. The extremal functions were found independently by Escobar [16]
and Beckner [6]. In particular,

1
S

=
n − 2

2
σ1/(n−1)

n ,(B)

where σn denotes the volume of the unit sphere in R
n.

In this paper we study some Sobolev-type trace inequalities on Riemannian
manifolds with boundaries. Throughout this paper we denote p = 2n/(n − 2),
q = 2(n − 1)/(n − 2), and S1 and S as in (A) and (B), respectively.

THEOREM 0.1 (Main Theorem) For n ≥ 3, let (M, g) be some smooth n-
dimensional, compact, Riemannian manifold with a smooth boundary. Then
there exists some constant A = A(M, g) > 0 such that, for all u ∈ H1(M),(∫

∂M
|u|q dsg

)2/q

≤ S

∫
M

|∇gu|2 dvg + A

∫
∂M

u2 dsg ,(0.2)

where dvg denotes the volume form of (M, g) and dsg denotes the induced
volume form on ∂M .

REMARK 0.2 The constant S in front of
∫
M |∇gu|2 dvg is sharp. It cannot

be replaced by any smaller number.

REMARK 0.3 In general,
∫
∂M u2 dsg cannot be replaced by

∫
∂M ur dsg for

r < 2. For instance, this is the case for any bounded domain in R
n with the

flat metric.

REMARK 0.4 The above theorem in the special case n ≥ 5 and (M, g) a
bounded, smooth domain in R

n with the Euclidean metric was obtained by
Adimurthi and Yadava in [1]. Our method in proving Theorem 0.1 is different
from theirs.

REMARK 0.5 Clearly we only need to consider the case when M is con-
nected. Throughout the paper, we assume this.

The present work is stimulated by some recent work of Hebey and Vaugon
[21], where they proved a conjecture of Aubin [4]: For n ≥ 3 and (M, g) any
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smooth n-dimensional, compact manifold without boundary, there exists some
constant C > 0 such that, for all u ∈ H1(M),(∫

M
|u|p dvg

)2/p

≤ S1

∫
M

|∇gu|2 dvg + C

∫
M

u2 dvg .(0.3)

One of the main ingredients in their proof of (0.3) is, through the Moser
iteration technique, to obtain an appropriate upper bound for blowup minimum-
type solutions to certain critical exponent equations with the zero Dirichlet
boundary condition. Such asymptotic analysis was obtained by Han in [18],
using the Moser iteration technique, for blowup minimum-type solutions to
certain critical exponent equations with the zero Dirichlet boundary conditions
in general domains in R

n, which extend results of Atkinson and Peletier [2]
and Brezis and Peletier [10] on balls in R

n. Such extension was conjectured
by Brezis and Peletier and was proven by Rey [31] using a different method.

During the past few years, energy-independent asymptotic analysis for
blowup solutions to certain critical exponent equations has been obtained. See
Schoen [32], Zhang [36], Chang, Gursky, and Yang [12], Li [24, 25, 23],
Schoen and Zhang [33], and the references therein.

As in [21], one of the main ingredients in our proof of Theorem 0.1 is
some asymptotic analysis for blowup minimum-type solutions. However, we
need to overcome new difficulties since what we encounter here are certain
nonlinear Neumann boundary conditions rather than zero Dirichlet boundary
conditions as in [18] and [21]. Moreover, Theorem 0.1 for n = 3 is subtler:
In addition to the upper bound of solutions obtained by the Moser iteration
technique, we also need to obtain an appropriate lower bound.

Another main ingredient is local balance checking via the Pohozaev iden-
tity. Using similar methods, we have established some other Sobolev-type
inequalities. In particular, we have extended theorem 1 in [1] from dimension
n ≥ 5 to n ≥ 3. This will be addressed in a forthcoming paper.

1 Preliminary Estimates

We first present two weaker inequalities from which one can deduce that
minimum-type solutions can blow up at only one point. Although this step is
well-known, we include a proof here for the reader’s convenience.

PROPOSITION 1.1 For all ε > 0, there exists some constant B(ε) depending
only on ε, M , and g such that
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∂M

|u|q dsg

)2/q

≤ (S + ε)
∫

M
|∇gu|2 dvg + B(ε)

∫
M

u2 dvg , ∀u ∈ H1(M) .

PROOF: By partition of unity, it follows easily from (0.1). We omit the
details.

PROPOSITION 1.2 For all ε > 0, there exists some constant A(ε) depending
only on ε, M , and g such that for all u ∈ H1(M),(∫

∂M
|u|q dsg

)2/q

≤ (S + ε)
∫

M
|∇gu|2 dvg + A(ε)

∫
∂M

u2 dsg .(1.1)

PROOF: We prove this proposition using an argument by contradiction.
Suppose the contrary of (1.1), namely, that there exists some constant δ > 0
such that for all α > 1,

ξα := inf
H1(M)\{0}

∫
M |∇gu|2 dvg + α

∫
∂M u2 dsg

(
∫
∂M |u|q dsg)2/q

≤ 1
S

− δ .(1.2)

Claim. There exists some nonnegative function uα ∈ H1(M) satisfying

ξα =
∫

M
|∇guα|2 dvg + α

∫
∂M

u2
α dsg ,

∫
∂M

uq
α dsg = 1 .(1.3)

PROOF OF CLAIM: We sketch this well-known proof for the reader’s con-
venience. Let {u(m)} be a minimizing sequence with

‖u(m)‖q,∂M =
(∫

∂M
|u(m)|q dsg

)1/q

= 1

and u(m) ≥ 0. Clearly, ‖u(m)‖H1(M) ≤ C. After passing to a subsequence,

u(m) converges weakly to some u ∈ H1(M), u ≥ 0. It is not difficult to see
that ∫

∂M

(
|u(m)|q − |u(m) − u|q

)
dsg =

∫
∂M

uq dsg + o(1) ,

and consequently∫
∂M

|u(m) − u|q dsg ≤ 1 + o(1) ,

∫
∂M

uq dsg ≤ 1 ,

where o(1) denotes some quantity tending to zero as m tends to ∞.
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Therefore, by the Sobolev embedding theorems and Proposition 1.1, we
have, for ε0 > 0,

ξα =
∫

M
|∇u(m)|2 + α

∫
∂M

|u(m)|2 + o(1)

=
∫

M
|∇(u(m) − u)|2 +

∫
M

|∇u|2 + α‖u‖2
2,∂M + o(1)

=
∫

M
|∇(u(m) − u)|2 +

B(ε0)
S + ε0

∫
M

|u(m) − u|2 +
∫

M
|∇u|2

+ α‖u‖2
2,∂M + o(1)

≥ 1
S + ε0

(∫
∂M

|u(m) − u|q
)2/q

+ ξα

(∫
∂M

uq

)2/q

+ o(1)

≥ 1
S + ε0

∫
∂M

|u(m) − u|q + ξα

∫
∂M

uq + o(1)

=
(

1
S + ε0

− ξα

)∫
∂M

|u(m) − u|q + ξα + o(1) .

Choose ε0 > 0 small so that 1
S+ε0

− ξα ≥ δ/2; we have from the above that∫
∂M |u(m) − u|q = o(1). It follows easily that u is a minimum of (1.2).

Now let uα be some nonnegative function in H1(M) satisfying (1.3). It
is easy to see from (1.3) that ‖uα‖H1(M) is bounded by some constant inde-
pendent of α. It follows that, after passing to some subsequence, uα weakly
converges to some u ∈ H1(M). This leads to∫

M
|uα − u|2 dvg +

∫
∂M

|uα − u|2 dsg = o(1) ,(1.4)

and therefore, in view of (1.3),

u = 0 on ∂M .(1.5)

Here and in the following, o(1) denotes some quantity tending to zero as α
tends to ∞.

Therefore, by Proposition 1.1, (1.4), and (1.5), we have, for ε0 > 0,

ξα =
∫

M
|∇uα|2 + α

∫
∂M

|uα|2

=
∫

M
|∇(uα − u)|2 +

∫
M

|∇u|2 + α‖uα‖2
2,∂M + o(1)
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≥
∫

M
|∇(uα − u)|2 + o(1)

≥ 1
S + ε0

(∫
∂M

|uα − u|q
)2/q

+ o(1)

=
1

S + ε0
+ o(1) .

Sending α to ∞, we obtain from the above and (1.2) that

1
S

− δ ≥ 1
S + ε0

.

Sending ε0 to zero, we reach a contradiction.

2 Asymptotic Analysis

From now on, we begin to prove Theorem 0.1 through an argument by con-
tradiction. Suppose the contrary of Theorem 0.1 is true; then we have, for all
α ≥ 1,

ξα <
1
S

,(2.1)

where ξα is defined in (1.2). As in Section 1, there exists some nonnegative
function uα ∈ H1(M) satisfying (1.3). It follows that uα satisfies{

−Δguα = 0 in M
∂guα

∂ν = ξαuq−1
α − αuα on ∂M .

(2.2)

In this section we establish, by using the Moser iteration technique, an appro-
priate upper bound for uα.

For all ε > 0, it follows from (1.3), (2.1), and Proposition 1.2 that there
exists some A(ε) such that

1 +
ε

S
> (S + ε)ξα

= (S + ε)‖∇guα‖2
2,M + α(S + ε)‖uα‖2

2,∂M

≥
(∫

∂M
|uα|q

)2/q

+ [α(S + ε) − A(ε)] ‖uα‖2
2,∂M

= 1 + [α(S + ε) − A(ε)] ‖uα‖2
2,∂M .
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Sending α to ∞, we have

(S + ε) lim inf
α→∞

ξα ≥ 1 and 1 +
ε

S
≥ 1 + (S + ε) lim sup

α→∞
α‖uα‖2

2,∂M .

Sending ε to 0, we have, by using (2.1), that

lim
α→∞

ξα =
1
S

(2.3)

and

lim
α→∞

α‖uα‖2
2,∂M = 0 .(2.4)

PROPOSITION 2.1 There exists xα ∈ ∂M such that for all δ > 0,

lim
α→∞

∫
Bδ(xα)∩∂M

uq
α = 1 .

Before proving the previous proposition, we present a well-known lemma
(see, e.g., [5] for results of this type).

LEMMA 2.2 Suppose {yα} ∈ ∂M for a sequence of α → ∞ satisfies, for
some 0 < β < 1, δ > 0, ∫

Bδ(yα)∩∂M
uq

α ≤ β .(2.5)

Then

lim
α→∞

∫
Bδ/2(yα)∩∂M

uq
α = 0 .(2.6)

PROOF: Let η = ηα ∈ C∞(M) be some cutoff function satisfying

η =

{
1 in Bδ/2(yα) ∩ M

0 in M \ Bδ(yα)

and
|∇gη| + |∇2

gη| ≤ C(δ, M, g) .

For 1 < r ≤ q − 1, multiplying the first equation in (2.2) by η2ur
α and

integrating by parts, we obtain, by using the boundary condition of uα in
(2.2), that∫

M
∇guα · ∇g

(
η2ur

α

)
dvg = ξα

∫
∂M

η2uq−1+r
α dsg − α

∫
∂M

η2ur+1
α dsg .
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Direct calculation yields∫
M

∇guα · ∇g

(
η2ur

α

)
dvg

=
4r

(r + 1)2

∫
M

∣∣∇g

(
u(r+1)/2

α η
)∣∣2 dvg +

r − 1
(r + 1)2

∫
M

ur+1
α Δg(η2) dvg

− 4r

(r + 1)2

∫
M

ur+1
α |∇gη|2 dvg − r − 1

(r + 1)2

∫
∂M

ur+1
α

∂g(η2)
∂ν

dsg .

(2.7)

It follows that∫
M

∣∣∇g

(
u(r+1)/2

α η
)∣∣2

= −r − 1
4r

∫
M

ur+1
α Δg(η2) +

∫
M

ur+1
α |∇gη|2 +

r − 1
4r

∫
∂M

ur+1
α

∂g(η2)
∂ν

+
ξα(r + 1)2

4r

∫
∂M

uq−1+r
α η2 − α(r + 1)2

4r

∫
∂M

ur+1
α η2

≤ ξα(r + 1)2

4r

∫
∂M

uq−1+r
α η2 + C(δ, r)

{∫
M

ur+1
α +

∫
∂M

ur+1
α

}
.

Using (1.3), the fact that r+1 ≤ q < p, and the Sobolev embedding theorems,
we know that ∫

M
ur+1

α +
∫

∂M
ur+1

α

≤ C(r, M)
{∫

M
|∇guα|2 +

∫
∂M

u2
α

}(r+1)/2

≤ C(r, M) .

(2.8)

Consequently,∫
M

∣∣∇g

(
u(r+1)/2

α η
)∣∣2 ≤ ξα(r + 1)2

4r

∫
∂M

uq−1+r
α η2 + C(δ, r, M) .(2.9)

Applying Hölder’s inequality and then Proposition 1.1 to u = u
(r+1)/2
α η gives,

for all ε > 0,∫
∂M

uq−1+r
α η2(2.10)

≤
(∫

Bδ(yα)∩∂M
uq

α

)(q−2)/q (∫
∂M

(u(r+1)/2
α η)q

)2/q
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≤
(∫

Bδ(yα)∩∂M
uq

α

)(q−2)/q

(S + ε)
∥∥∥∇g

(
u(r+1)/2

α η
)∥∥∥2

2,M

+ B(ε)
(∫

Bδ(yα)∩∂M
uq

α

)(q−2)/q∥∥∥u(r+1)/2
α η)

∥∥∥2

2,M
.

Using the fact that β < 1, we now fix some r ∈ (1, q−1] and ε > 0 satisfying

S + ε

S − ε
β(q−2)/q (r + 1)2

4r
≤ 1 − ε .

Consequently, in view of (2.3), we have for α large

ξα(S + ε)β(q−2)/q (r + 1)2

4r
≤ 1 − ε .

Combining (2.9), (2.10), (2.8), (2.5), and the above, we obtain∫
M

∣∣∇g

(
u(r+1)/2

α η
)∣∣2 ≤ C(δ, r, ε, β, M) .(2.11)

It follows from the Sobolev embedding theorems, (2.8), and (2.11) that∫
Bδ/2(yα)∩∂M

u(r+1)q/2
α

≤
∫

∂M

(
u(r+1)/2

α η
)q

≤ C(M)
{∥∥∇g

(
u(r+1)/2

α η
)∥∥q

2,M
+
∥∥u(r+1)/2

α η
∥∥q

2,M

}
≤ C(δ, r, β, ε, M) .

(2.12)

Since (r + 1)q/2 > q, we can derive (2.6) from (2.4), (2.12), and Hölder’s
inequality. Lemma 2.2 is thereby established.

PROOF OF PROPOSITION 2.1: For x ∈ ∂M , we define δx,α > 0 by∫
Bδx,α(x)∩∂M

uq
α =

1
2

.(2.13)

Clearly, infx∈∂M δx,α > 0. We pick xα ∈ ∂M satisfying

δxα,α ≤ 2 inf
x∈∂M

δx,α .(2.14)
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We claim that {xα} satisfies the property stated in the proposition. Suppose
the contrary; then there exists some δ > 0, 0 < β < 1, and a sequence of
α → ∞ such that ∫

Bδ(xα)∩∂M
uq

α ≤ β .

This, according to Lemma 2.2, implies

lim
α→∞

∫
Bδ/2(xα)∩∂M

uq
α = 0 .

Therefore, in view of (2.13), we have for large α

δxα,α ≥ δ

2
.

This, together with (2.14), yields for large α

δx,α ≥ δ

4
, ∀x ∈ ∂M .(2.15)

Clearly,
⋃

x∈∂M Bδ/8(x) is an open cover of ∂M . Due to the compactness of
∂M , there exist x1, . . . , xm ∈ ∂M such that ∂M ⊂

⋃m
i=1 Bδ/8(xi). We see

from (2.15) and (2.13) that∫
Bδ/4(xi)∩∂M

uq
α ≤ 1

2
, 1 ≤ i ≤ m.

We can then apply Lemma 2.2 with δ replaced by δ/4, β = 1/2, and yα = xi

to conclude that

lim
α→∞

∫
∂M

uq
α ≤ lim

α→∞

m∑
i=1

∫
Bδ/8(xi)∩∂M

uq
α = 0 .

This contradicts (1.3). Proposition 2.1 is thus established.

Let xα ∈ M be some maximum point of uα, that is,

uα(xα) = max
M

uα .

It follows from the maximum principle that xα ∈ ∂M unless uα is identically
equal to a constant. It is easy to see from (1.2) and (1.3) that uα is not
identically equal to a constant for α large. Therefore, xα ∈ ∂M for large
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α. Set μα = uα(xα)−2/(n−2). Since ∂guα

∂ν (xα) ≥ 0, we see from (2.2) that
αuα(xα) ≤ ξαuα(xα)q−1, that is,

αμα ≤ ξα ≤ C .(2.16)

It follows that
lim

α→∞
μα = 0 .

Let (y1, . . . , yn−1, yn) denote some geodesic normal coordinates given by
the exponential map expxα

with ∂
∂yn being the unit inner normal of M at

y = 0. In this coordinate system, the metric g is given by gij(y) dyi dyj . For
suitably small δ1 > 0 (independent of α), we define vα in a neighborhood of
z = 0 by

vα(z) = uα(xα)−1uα(expxα
(μαz)) , z ∈ Oα ⊂ R

n ,

where

Oα =
{

z ∈ R
n : |z| <

δ1

μα
, expxα

(μαz) ∈ M

}
.(2.17)

We write ∂Oα = Γ1
α ∪ Γ2

α, where

Γ1
α = {z ∈ ∂Oα : expxα

(μαz) ∈ ∂M} ,

Γ2
α = {z ∈ ∂Oα : expxα

(μαz) ∈ M} .

It follows from (2.2) that vα satisfies⎧⎪⎨⎪⎩
−Δgαvα = 0 in Oα
∂gαvα

∂ν = ξαvq−1
α − αμαvα on Γ1

α

vα(0) = 1 , 0 ≤ vα ≤ 1 ,

(2.18)

where gα denotes the metric on Oα given by gα = gij(μαz) dzi dzj . It follows
from (2.18), (2.16), and standard elliptic estimates (see, e.g., [17]) that for all
R > 1,

‖vα‖C3(BR∩Oα) ≤ C(R) , ∀α ≥ 1 .(2.19)

Notice that because vα(0) = 1, we know from (2.19) that{∫
B1(0)∩Γ1

α
vq
α dsgα ≥ 1/C > 0∫

B1(0)∩Γ1
α

v2
α dsgα ≥ 1/C > 0 .

(2.20)
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It follows from the first inequality in (2.20) and Proposition 2.1 that

lim
α→∞

|xα − xα| = 0 .(2.21)

By change of variables, we have

α‖uα‖2
2,∂M ≥ α

∫
Bμα (xα)∩∂M

u2
α = αμα

∫
B1∩Γ1

α

v2
α dsgα .

We derive from (2.4), the second inequality in (2.20), and the above that

lim
α→∞

αμα = 0 .(2.22)

It follows from (2.19) that there exists v ∈ C2(Rn
+) such that along some

subsequence,

lim
α→∞

‖vα − v‖C2(BR∩Oα) = 0 , ∀R > 0 ,(2.23)

where BR = {z ∈ R
n : |z| < R}. Clearly, in view of (2.18), (2.22), and (2.3),

v satisfies ⎧⎪⎨⎪⎩
Δv = 0 in R

n
+

∂v
∂ν = 1

S vq−1 on ∂R
n
+

v(0) = 1 , 0 < v ≤ 1 .

(2.24)

It follows from our earlier work [26] that

v(z′, zn) =
(

(n − 2)2S2

|z′|2 + (zn + (n − 2)S)2

)(n−2)/2

,(2.25)

where z′ = (z1, . . . , zn−1).
Due to the uniqueness of the limit function v, we know that (2.23) holds

for the full limit α → ∞.

PROPOSITION 2.3 For δ1 = δ1(M, g) > 0 small enough,

lim
α→∞

∫
Γ1

α

|vα − v|q = 0 .

PROOF: Multiplying (2.24) by v and integrating by parts, we have∫
Rn

+

|∇v|2 =
1
S

∫
∂Rn

+

vq .
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We also know that v is a minimum of (0.1), namely,

S

∫
Rn

+

|∇v|2 =
(∫

∂Rn
+

vq

)2/q

.

Thus, ∫
∂Rn

+

vq = 1 .(2.26)

It follows from (2.21) and Proposition 2.1 that

lim
α→∞

∫
Γ1

α

vq
α = lim

α→∞

∫
Bδ1(xα)∩∂M

uq
α = 1 .(2.27)

It is easy to see from (2.26) and the explicit form of v in (2.25) that

lim
α→∞

∫
Γ1

α

vq = 1 .

Therefore, for all ε > 0, there exists R = R(ε) > 1 such that for α large,∫
Γ1

α∩BR

vq > 1 − ε ,

∫
Γ1

α\BR

vq < 2ε .(2.28)

Consequently, using the strong convergence of vα to v given in (2.23), we
have, for α large, that∫

Γ1
α∩BR

|vα − v|q < ε ,

∫
Γ1

α∩BR

vq
α > 1 − 2ε .(2.29)

We derive from (2.27) and the second inequality in (2.29) that for large α,∫
Γ1

α\BR

vq
α ≤ 3ε .(2.30)

Combining the first inequality in (2.29), (2.30), and the second inequality in
(2.28), we have for large α that∫

Γ1
α

|vα − v|q ≤
∫

Γ1
α∩BR

|vα − v|q + 2q

∫
Γ1

α\BR

vq
α + 2q

∫
Γ1

α\BR

vq

≤ (1 + 2q+3)ε .

Proposition 2.3 follows immediately.
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Recall that the conformal Laplacian operator Lg and the conformal bound-
ary operator Bg are given by (see, e.g., [15]){

Lgψ = Δgψ − a(n)Rgψ

Bgψ = ∂gψ
∂ν + b(n)Hgψ ,

where a(n) = n−2
4(n−1) , b(n) = n−2

2 , Rg is the scalar curvature of M , and Hg

is the mean curvature of ∂M with respect to the inner normal of ∂M (e.g.,
the unit ball in R

n has positive mean curvature).
Let ϕ be some C2-positive function on M , and let ĝ = ϕ4/(n−2)g. It is

well-known (see, e.g., [15]) that for all ψ ∈ H1(M),{
Lĝ(ψ/ϕ) = ϕ−(n+2)/(n−2)Lg(ψ) in M

Bĝ(ψ/ϕ) = ϕ−n/(n−2)Bg(ψ) on ∂M .
(2.31)

Rewrite (2.2) as⎧⎪⎪⎨⎪⎪⎩
Δguα = 0 in M

∂guα

∂ν + b(n)Hguα

= ξαuq−1
α − αuα + b(n)Hguα on ∂M .

(2.32)

Setting wα = uα/ϕ, it follows from (2.31) that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δguα − a(n)Rguα

= ϕ(n+2)/(n−2)(Δĝwα − a(n)Rĝwα) in M

∂guα

∂ν + b(n)Hguα

= ϕn/(n−2)(∂ĝwα

∂ν + b(n)Hĝwα) on ∂M .

(2.33)

We will choose an appropriate ϕ = ϕα and then apply the Moser iteration
technique to show that wα is bounded above by some constant independent of
α. Without loss of generality, we assume (M, g) is a smooth, bounded open
set of a slightly larger Riemannian manifold (M̃, g). Let γ be the geodesic
in M̃ with γ(0) = xα, γ′(0) = ν. Set Pα = γ(tαμα) with tα = (n − 2)/ξα.
Let (y1, . . . , yn−1, yn) be some geodesic normal coordinate system of TPαM̃

with ∂
∂yn = −γ′(tαμα), expPα

: TPαM̃ → M̃ denoting the exponential map,

and gij(y) =
〈

∂
∂yi ,

∂
∂yj

〉
denoting the metric of M̃ , with gij(0) = δij and

Γk
ij(0) = 0, where Γk

ij is the Christoffel symbol. We define GPα by{
−ΔgGPα = n(n − 2)ωnδPα in M̃

GPα = 0 on ∂M̃ ,
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where ωn is the volume of the unit ball in R
n. It follows from Appendix B

that
GPα ◦ expPα

(y) = |y|2−n + E(y) ,

where E(y) satisfies

|y|n−3|E(y)| + |y|n−2|∇gE(y)| ≤ C(δ1) , ∀|y| ≤ δ1 .(2.34)

Define ϕα : M → R by

ϕα = tn−2
α μ(n−2)/2

α GPα .

Clearly, ϕα satisfies
−Δgϕα = 0 in M .

PROPOSITION 2.4 There exists some constant C depending only on (M, g)
such that for all α ≥ 1,

uα ≤ Cϕα on M .

PROOF: We only need to prove the proposition for α large. Set wα =
uα/ϕα and ĝ = ϕ

4/(n−2)
α g. Equation (2.33) holds in M for ϕ = ϕα. Setting

ψ = ϕ = ϕα in (2.31), we have{
−a(n)[Rĝ − Rgϕ

−4/(n−2)
α ] = 0 in M

∂gϕα

∂ν + b(n)Hgϕα = b(n)Hĝϕ
n/(n−2)
α on ∂M .

(2.35)

Combining (2.32), (2.33), and (2.35), we have{
Δĝwα = 0 in M ,
∂ĝwα

∂ν = ξαwq−1
α −

(
αϕ

−2/(n−2)
α + ∂gϕα

∂ν ϕ
−n/(n−2)
α

)
wα on ∂M .

(2.36)

We need the following lemma to simplify (2.36):

LEMMA 2.5 For α large,

αϕ−2/(n−2)
α +

∂gϕα

∂ν
ϕ−n/(n−2)

α ≥ 0 on ∂M .

PROOF: Clearly Lemma 2.5 is equivalent to

−∂gϕα

∂ν
≤ αϕα on ∂M .(2.37)

Let 0 < δ2 � δ1. It is clear from the proof how small we need δ2 to be.
It is independent of α. Notice that GPα is bounded below by some positive
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constant independent of α in M \Bδ2(xα); also, the absolute values of its first
derivatives are bounded above by some constant independent of α in the same
region. It is clear that (2.37) holds in M \ Bδ2(xα) for large α.

In the y-coordinate, ∂M near xα is given by

yn = tαμα + f(y′) , |y′| ≤ δ1 ,

with f(0) = 0, |∇2
gf(y′)| ≤ C(δ1), ∀|y′| ≤ δ1. By the choice of coordinates,

∂
∂yn is orthogonal to the tangent space of M̃ at xα, which is spanned by
∂

∂yi + ∂f
∂yi (0) ∂

∂yn , 1 ≤ i ≤ n − 1. Consequently, for 1 ≤ i ≤ n − 1,

∂f

∂yi
(0) = − gin

gnn
= O(μ2

α) .

It follows from the mean value theorem that{
f(y′) = O(|y′|2 + μ2

α|y′|)
∂f
∂yi (y′) = O(|y′| + μ2

α) , 1 ≤ i ≤ n − 1 .
(2.38)

Therefore,

μα ≤ C|y| , ∀|y| ≤ δ1 , yn = tαμα + f(y′) .(2.39)

It is not difficult to see that at expPα
(y′, tαμα + f(y′)) ∈ ∂M ,

ν =
n−1∑
i=1

∂f

∂yi

∂

∂yi
− ∂

∂yn
+ O(|y′|2 + μ2

α) ,

∂ϕα

∂yi
= −(n − 2)tn−2

α μ(n−2)/2
α yi|y|−n(2.40)

+ tn−2
α μ(n−2)/2

α

∂E

∂yi
(y) , 1 ≤ i ≤ n .

It is easy to see from the definition of ϕα and (2.34) that

ϕα(y) ≥ C−1μ(n−2)/2
α |y|2−n , |y| ≤ δ2 .(2.41)

It follows that for all |y| ≤ δ2, yn = tαμα + f(y′), we have

∂gϕα

∂ν
= ∇gϕα · ν =

n∑
l,i=1

gli ∂ϕα

∂yi

∂

∂yl
· ν

= −∂ϕα

∂yn
+ O(|y||∇ϕα|) .

(2.42)
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Also, from (2.34), (2.40), and (2.41), we have that

|y| |∇ϕα| ≤ Cϕα(y) , ∀|y| ≤ δ2 , yn = tαμα + f(y′) .(2.43)

Combining (2.42) and (2.43), we have

∂ϕα

∂ν
≥ −∂ϕα

∂yn
− Cϕα(y) , ∀|y| ≤ δ1 , yn = tαμα + f(y′) .(2.44)

It follows from (2.34) and (2.41) that

μ(n−2)/2
α |∇E(y)| ≤ Cϕα(y) .

Using (2.38) and the above, we have, for |y| ≤ δ1, yn = tαμα + f(y′), that

−∂ϕα

∂yn
≥ (n − 2)tn−2

α μ(n−2)/2
α yn|y|−n − Cϕα(y)

= (n − 2)tn−2
α μ(n−2)/2

α (tαμα)|y|−n

+ (n − 2)tn−2
α μ(n−2)/2

α f(y′)|y|−n − Cϕα(y)

≥ (n − 2)tn−2
α μ(n−2)/2

α (tαμα)|y|−n − Cϕα(y)

≥ −Cϕα(y) .

Lemma 2.5 follows from (2.44) and the above since, as pointed out earlier,
(2.37) easily holds in M \ Bδ2(xα) for large α.

It follows from Lemma 2.5 and (2.36) that wα satisfies{
Δĝwα = 0 in M
∂ĝwα

∂ν ≤ ξαwq−1
α on ∂M .

(2.45)

Let η be some smooth, nonnegative cutoff function. Multiplying (2.45) by
wk

αη2 for k > 1 and integrating by parts, we obtain∫
M

∇ĝwα∇ĝ

(
wk

αη2)dvĝ ≤ ξα

∫
∂M

wq−1+k
α η2 dsĝ .
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Here and in the following, C denotes some constant independent of α. As in
(2.7), we have∫

M
∇ĝwα∇ĝ

(
wk

αη2)dvĝ

=
4k

(k + 1)2

∫
M

∣∣∇ĝ

(
w(k+1)/2

α η
)∣∣2 dvĝ +

k − 1
(k + 1)2

∫
M

wk+1
α Δĝ(η2)dvĝ

− 4k

(k + 1)2

∫
M

wk+1
α |∇ĝη|2 dvĝ − k − 1

(k + 1)2

∫
∂M

wk+1
α

∂ĝ(η2)
∂ν

dsĝ.

We deduce from the last two formulae that∫
M

∣∣∇ĝ

(
w(k+1)/2

α η
)∣∣2 dvĝ

≤ −k − 1
4k

∫
M

wk+1
α Δĝ(η2)dvĝ +

∫
M

wk+1
α |∇ĝη|2dvĝ

+
k − 1
4k

∫
∂M

wk+1
α

∂ĝ(η2)
∂ν

dsĝ +
ξα(k + 1)2

4k

∫
∂M

wq−1+k
α η2 dsĝ .

(2.46)

We still need the following lemma to start the Moser iteration process:

LEMMA 2.6 There exists some 0 < δ0 � 1, s0 > q, and C > 1 independent
of α such that ∫

∂M\Bμα/δ0(xα)
ws0

α dsĝ ≤ C .(2.47)

PROOF: For all ε > 0, it follows from Proposition 2.1 and Proposition
2.3 that there exists 0 < δ0 = δ0(ε) < 1 such that∫

∂M\Bμα/δ0(xα)
wq

α dsĝ =
∫

∂M\Bμα/δ0 (xα)
uq

α dsg < ε .

Since ĝij ∼ μ2
αδij in B2μα/δ0(xα) \ Bμα/(4δ0)(xα), we can choose η to be

some cutoff function satisfying{
η(x) = 1 , d(xα, x) ≥ μα/δ0 ; η(x) = 0 , d(xα, x) ≤ μα/(2δ0)
|∇ĝη| + |∇2

ĝη| ≤ C .
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We also take some 1 < k ≤ q − 1. It follows from (2.46) and Theorem A.1 in
Appendix A that∫

M

∣∣∇ĝ

(
w(k+1)/2

α η
)∣∣2 dvĝ

≤ C(k, δ0) +
ξα(k + 1)2

4k

∫
∂M

wq−1+k
α η2 dsĝ

≤ C(k, δ0)

+
ξα(k + 1)2

4k

(∫
∂M

(
w(k+1)/2

α η
)q

dsĝ

)2/q (∫
∂M

wq
αdsĝ

)(q−2)/q

≤ C(k, δ0) + Cε(q−2)/q

∫
M

∣∣∇ĝ

(
w(k+1)/2

α η
)∣∣2 dvĝ .

Taking ε > 0 small, we have∫
M

∣∣∇ĝ

(
w(k+1)/2

α η
)∣∣2dvĝ ≤ C .

It follows from Theorem A.1 in Appendix A that

∫
∂M

(
w(k+1)/2

α η
)q

dsĝ ≤
(∫

M

∣∣∇ĝ

(
w(k+1)/2

α η
)∣∣2dvĝ

)q/2

≤ C .

Lemma 2.6 is established.

REMARK 2.7 Without loss of generality, we can assume that δ0 in Lemma
2.6 is small enough so that Bμα/δ0(xα) ⊂ B4μα/δ0(Pα).

Set, for δ = δ0/10,

Ri = μα

(
2 − 1

2i−1

)
δ

, i = 1, 2, 3, . . . .

Clearly

Bμα/δ0(xα) ⊂ BRi(Pα) ∀i .(2.48)

Recall that for μα/δ < |y| ≤ 2μα/δ,
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μ
(2−n)/2
α

C
≤ ϕα(y) ≤ Cμ(2−n)/2

α , C−1μ−2
α g ≤ ĝ ≤ Cμ−2

α g .(2.49)

We can choose some smooth cutoff function ηi satisfying{
ηi(y) = 1 , |y| > Ri+1; ηi(y) = 0 , |y| < Ri

|∇ĝηi| ≤ C2i , |∇2
ĝηi| ≤ C4i .

Taking η = ηi in (2.46), we have∫
M

∣∣∇ĝ

(
w(k+1)/2

α ηi

)∣∣2 dvĝ

≤ C4i

∫
M\BRi

(Pα)
wk+1

α dvĝ + C2i

∫
∂M\BRi

(Pα)
wk+1

α dsĝ

+
C(k + 1)2

k

∫
∂M\BRi

(Pα)
wq−1+k

α dsĝ .

(2.50)

It follows from (2.48), (2.49), and Theorem A.1 in Appendix A that

[ ∫
M\BRi

(Pα)

(
w(k+1)/2

α ηi

)p
dvĝ

]2/p

≤ C

∫
M\BRi

(Pα)

∣∣∇ĝ

(
w(k+1)/2

α ηi

)∣∣2 dvĝ ,

(2.51)

[ ∫
∂M\BRi

(Pα)

(
w(k+1)/2

α ηi

)q
dsĝ

]2/q

≤ C

∫
M\BRi

(Pα)

∣∣∇ĝ

(
w(k+1)/2

α ηi

)∣∣2 dvĝ .

(2.52)

Using (2.50), we can derive from (2.51) and (2.52) that

[ ∫
M\BRi+1 (Pα)

w(k+1)p/2
α dvĝ

]2/p

≤ C4i

∫
M\BRi

(Pα)
wk+1

α dvĝ + C2i

∫
∂M\BRi

(Pα)
wk+1

α dsĝ

+
C(k + 1)2

k

∫
∂M\BRi

(Pα)
wq−1+k

α dsĝ ,

(2.53)
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and [ ∫
∂M\BRi+1 (Pα)

w(k+1)q/2
α dsĝ

]2/q

≤ C4i

∫
M\BRi

(Pα)
wk+1

α dvĝ + C2i

∫
∂M\BRi

(Pα)
wk+1

α dsĝ

+
C(k + 1)2

k

∫
∂M\BRi

(Pα)
wq−1+k

α dsĝ .

(2.54)

Set r0 = s0/(q − 2) where s0 is given in Lemma 2.6. It follows from (2.47)
and Hölder’s inequality that∫

∂M\BRi
(Pα)

wq−1+k
α dsĝ

=
∫

∂M\BRi
(Pα)

wq−2
α wk+1

α dsĝ

≤ C

(∫
∂M\BRi

(Pα)
w(k+1)r0/(r0−1)

α dsĝ

)(r0−1)/r0

.

(2.55)

It follows from (2.53), (2.54), and (2.55) that[ ∫
M\BRi+1 (Pα)

w(k+1)p/2
α dvĝ

]2/p

+
[ ∫

∂M\BRi+1 (Pα)
w(k+1)q/2

α dsĝ

]2/q

≤ C4i

∫
M\BRi

(Pα)
wk+1

α dvĝ + C2i

∫
∂M\BRi

(Pα)
wk+1

α dsĝ

+
C(k + 1)2

k

[ ∫
∂M\BRi

(Pα)
w(k+1)r0/(r0−1)

α dsĝ

](r0−1)/r0

.

(2.56)

By setting β = q(r0 − 1)/(2r0), it is easy to see from s0 > q that β > 1.
Since we can take s0 close to q from the beginning, we can assume without
loss of generality that β ≤ p/2. It follows from Hölder’s inequality, (2.48),
and (2.49) that

(2.57)

[ ∫
M\BRi+1 (Pα)

w(k+1)β
α dvĝ

]1/β

≤ C

[ ∫
M\BRi+1 (Pα)

w(k+1)p/2
α dvĝ

]2/p
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and

(2.58)
∫

∂M\BRi
(Pα)

wk+1
α dsĝ

≤
[ ∫

∂M\BRi
(Pα)

w(k+1)r0/(r0−1)
α dsĝ

](r0−1)/r0

.

Set q0 = 2r0/(r0−1) < q, qi = βqi−1 = βi−1q, and pi = qi(r0−1)/r0 = 2βi,
where i ≥ 1. Taking k = pi − 1 (i ≥ 1) in (2.56) and using (2.57) and (2.58),
we obtain

‖wα‖pi

pi+1,M\BRi+1 (Pα) + ‖wα‖pi

qi+1,∂M\BRi+1 (Pα)

≤
(

C4i +
Cp2

i

(pi − 1)

)(
‖wα‖pi

pi,M\BRi
(Pα) + ‖wα‖pi

qi,∂M\BRi
(Pα)

)
.

Since β > 1, we have aβ + bβ ≤ (a + b)β for all a, b ≥ 0. It follows that(
‖wα‖pi+1

pi+1,M\BRi+1 (Pα) + ‖wα‖pi+1
qi+1,∂M\BRi+1 (Pα)

)1/pi+1

≤
(
‖wα‖pi

pi+1,M\BRi+1 (Pα) + ‖wα‖pi

qi+1,∂M\BRi+1 (Pα)

)1/pi

≤
(

C4i +
Cp2

i

pi − 1

)1/pi (
‖wα‖pi

pi,M\BRi
(Pα)

+ ‖wα‖pi

qi,∂M\BRi
(Pα)

)1/pi

.

(2.59)

It is easy to see that(
C4i +

Cp2
i

pi − 1

)1/pi

≤ [C(4i + 2βi)]1/(2βi) ≤ C1/(2βi)(4 + β)i/(2βi) .

Thus
∞∏
i=1

(
C4i +

Cp2
i

pi − 1

)1/pi

≤ C < ∞ .

It follows that

‖wα‖pi+1,M\BRi+1 (Pα) ≤ C
(
‖wα‖2β

p1,M\BR1 (Pα) + ‖wα‖2β
q1,∂M\BR1 (Pα)

)1/(2β)

≤ C .
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Sending i to ∞, we have

‖wα‖L∞(M\B2μα/δ(Pα)) ≤ C(δ) .(2.60)

It is easy to see that inside B2μα/δ(Pα), |y| ≤ Cμα. Therefore, it follows from

(2.41) that ∀y ∈ B2μα/δ(Pα) : ϕα(y) ≥ C−1μ
−(n−2)/2
α . It follows that for all

y ∈ B2μα/δ(Pα),

wα =
uα

ϕα
≤ Cμ(n−2)/2

α uα = Cuα/uα(xα) ≤ C .(2.61)

Proposition 2.4 follows from (2.60) and (2.61).

3 Balance Checking via Pohozaev Identity

In this section, we derive a contradiction by using the Pohozaev identity to do
a balance checking in a ball centered at xα of radius 1/α. The upper bound
obtained in Section 2 plays a crucial role. For n = 3, it is subtler since we need
to obtain an appropriate lower bound of uα in order to reach a contradiction.
This lower bound is obtained in this section by use of the maximum principle.

By choosing an appropriate coordinate system centered at xα, we can as-
sume without loss of generality that xα = 0, gij(0) = δij , B+

1 (0) ⊂ M , and
{(x′, 0) : |x′| < 1} ⊂ ∂M .

Let Rα = 1/(αμα), hα = gij(μαx) dxi dxj in B+
10Rα

(0), and

v̄α(x) = μ(n−2)/2
α uα(μαx) for x ∈ B+

10Rα
(0) .

It follows from (2.22) and (2.2) that Rα → ∞ as α → ∞, and v̄α satisfies⎧⎪⎨⎪⎩
Δhα v̄α = 0 in B+

10Rα
(0)

∂hα v̄α

∂ν = ξαv̄q−1
α − αμαv̄α on {(x′, 0) : |x′| < 10Rα}

v̄α(0) = 1 , 0 < v̄α ≤ 1 .

(3.1)

Clearly

|hij
α (x) − δij | ≤ C|μαx| , |Γk

ij(x)| ≤ Cμα in B+
10Rα

(0) ,(3.2)

where Γk
ij is the Christoffel symbol of hα and C is, as always, some constant

independent of α.
As explained in Section 2,

lim
α→∞

‖vα − v‖
C3(B+

R(0))
= 0 ∀R > 0 ,(3.3)
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where v is the function defined in R
n
+ given in (2.25). It is not difficult to see

from Proposition 2.4 that

v̄α(x) ≤ C

1 + |x|n−2 for x ∈ B̄+
10Rα

(0) .(3.4)

We need some further estimates on v̄α.

PROPOSITION 3.1 For all α ≥ 1, x ∈ B+
Rα

(0), we have

|∇v̄α(x)| ≤ C

1 + |x|n−1 , |∇2v̄α(x)| ≤ C

1 + |x|n ,

where |∇2v̄α| =
∑n

i,j=1 |∂2v̄α/∂xi∂xj | and C is some constant independent
of α and x.

PROOF: It follows from (3.3) that

|∇v̄α(x)| < C , |∇2v̄α(x)| ≤ C in B+
1 (0) .

So we only need to show Proposition 3.1 for |x| > 1. For all x0 ∈ B+
Rα

(0) \
B+

1 (0), set R = |x0|, ũ(x) = Rn−2v̄α(Rx), and g̃ij(x) = (hα)ij(Rx). It
follows from (3.1) that{

Δg̃ũ = 0 in B+
5 (0) \ B+

1/5(0)
∂g̃ũ
∂ν = Rn−1(ξαv̄q−1

α (Rx) − αμαv̄α(Rx)) on
{
(x′, 0) : 1

5 < |x′| < 5
}

.

On
{
(x′, 0) : 1

5 < |x′| < 5
}
, we derive from (3.4) that∣∣∣∣∂g̃ũ

∂ν

∣∣∣∣ =
∣∣Rn−1(ξαv̄q−1

α (Rx) − αμαv̄α(Rx)
)∣∣ ≤ CR−1 + CαμαR ≤ C .

It follows from standard elliptic estimates that for some 0 < β < 1,

||ũ‖
Cβ(B+

4 \B+
1/4)

≤ C .(3.5)

Rewriting the boundary condition of ũ as

∂g̃ũ

∂ν
= ξαR−1ũq−1 − αμαRũ
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and noticing (see (3.5))

‖ξαR−1ũq−1 − αμαRũ‖
Cβ(B+

4 \B+
1/4)

≤ C ,

we have, by standard elliptic estimates, that

‖∇g̃ũ‖
Cβ(B+

3 \B+
1/3)

≤ C .(3.6)

Therefore

|∇hα v̄α(x0)| = R1−n
∣∣∣∇g̃ũ

(x0

R

)∣∣∣ ≤ C|x0|1−n ≤ C

(1 + |x0|n−1)
,

which gives us the gradient estimate.
Also, from (3.5) and (3.6), we know for some 0 < β′ < β,

‖ξαR−1ũq−1 − αμαRũ‖
C1,β′(B+

3 \B+
1/3)

≤ C .

Thus by standard elliptic estimates

‖∇2
g̃ũ‖

Cβ′(B+
2 \B+

1/2)
≤ C ,

which gives us

|∇2
hα

v̄α(x0)| = R−n
∣∣∣∇2

g̃ũ
(x0

R

)∣∣∣ ≤ C|x0|−n ≤ C

(1 + |x0|n)
.

We have, in view of (3.2), established Proposition 3.1.

For n = 3, we need to obtain an appropriate lower bound of v̄α. Clearly
one can also obtain lower bounds for n ≥ 4 by the same method, but since
we do not need it for the application in this paper, we omit it.

PROPOSITION 3.2 For n = 3 and α large enough,

v̄α(x) ≥ 1
C(1 + |x|) ∀x ∈ B+

R
1/4
α

(0) ,

where C > 0 is some constant independent of α.
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PROOF: In view of (3.3), we only need to prove the above estimate for
|x| > 20. In the following, α is always assumed to be suitably large. Let
x̄ = (0, . . . , 0, 1) and

Gα(x) =
1

|x − x̄| − 1

R
1/2
α |x − x̄|1/2

in B
R

1/3
α

(x̄) \ B2(x̄) .

It is easy to see that

1
2|x − x̄| ≤ Gα(x) ≤ 2

|x − x̄| in B
R

1/3
α

(x̄) \ B2(x̄) .

From (3.2) we have that in B+
R

1/3
α

(x̄) \ B2(x̄),

Δhα

(
− 1

R
1/2
α |x − x̄|1/2

)
≥ 1

CR
1/2
α |x − x̄|5/2

,∣∣∣∣Δhα

(
1

|x − x̄|

)∣∣∣∣ ≤ Cμα

|x − x̄|2 ,

where B+
R

1/3
α

(x̄) =
{
x ∈ R

n
+ : |x − x̄| < R

1/3
α

}
. It follows that ΔhαGα ≥ 0.

Also, it follows from (3.2) that for all x = (x′, 0), 1 < |x′| < R
1/3
α ,

∂hα

∂ν

(
1

|x − x̄|

)
≤ − 1

C|x − x̄|3 ,∣∣∣∣∣∂hα

∂ν

(
1

R
1/2
α |x − x̄|1/2

)∣∣∣∣∣ ≤ C

R
1/4
α |x − x̄|3

.

Therefore, using (3.4), we have, for all x = (x′, 0), 1 < |x′| < R
1/3
α ,

−αμαv̄α − ∂hα

∂ν
(Gα) ≥ − C

Rα(1 + |x|) +
1

C|x − x̄|3 > 0 .

We will use the maximum principle on A =
{
x ∈ R

n
+ : 10 < |x −

x̄| < R
1/3
α

}
. Let Σ1 = ∂A ∩ {xn = 0}, Σ2 = ∂A ∩ {|x − x̄| = 10}, and

Σ3 = ∂A ∩
{
|x − x̄| = R

1/3
α

}
. Choose 0 < τ < 1 small enough such that

τGα ≤ v̄α on Σ2. Define Hα = τGα − maxΣ3(τGα); then⎧⎪⎨⎪⎩
Δhα(v̄α − Hα) ≤ 0 in A

v̄α − Hα ≥ 0 on Σ2 ∪ Σ3
∂hα (v̄α−Hα)

∂ν > 0 , on Σ1 .
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It follows from the maximum principle that

v̄α ≥ Hα in A .

Consequently, for all x ∈ B+
R

1/4
α

(0) \ B+
10(x̄),

v̄α(x) ≥ Hα(x) ≥ Cτ

|x − x̄| − Cτ

R
1/3
α

≥ Cτ

2|x − x̄| .

Proposition 3.2 is established.

For convenience, throughout the rest of this section we set Γ1 = ∂B+
Rα

(0)∩
{(x′, 0) : x′ ∈ R

n−1} and Γ2 = ∂B+
Rα

(0) ∩ {(x′, xn) : xn > 0}. We always
use dV for the volume element of the standard Euclidean metric, dS for the
surface element of the standard Euclidean metric, ν for the unit outer normal
vector of the corresponding surface with respect to the specified metrics, and
· for the inner product under the standard Euclidean metric. The balance
checking via the Pohozaev identity will be performed in B+

Rα
(0).

The following identity can easily be verified (see [22]):

2Δvα(∇v̄α · x) = div[2(∇v̄α · x)∇v̄α − |∇v̄α|2x] + (n − 2)|∇v̄α|2 .

It follows that

(3.7)
∫

B+
Rα

Δv̄α(∇v̄α · x) dV − n − 2
2

∫
B+

Rα

|∇v̄α|2 dV

=
1
2

∫
B+

Rα

div[2(∇v̄α · x)∇v̄α − |∇v̄α|2x] dV .

Integrating by parts, we have

1
2

∫
B+

Rα

div[2(∇v̄α · x)∇v̄α − |∇v̄α|2x] dV

=
1
2

∫
∂B+

Rα

[2(∇v̄α · x)(∇v̄α · ν) − |∇v̄α|2(x · ν)] dS .

It is easy to check that

(∇v̄α · x)(∇v̄α · ν) =

⎧⎨⎩
(

∂v̄α
∂ν

)2 |x| on Γ2(∑n−1
i=1 xi

∂v̄α
∂xi

)
∂v̄α
∂ν on Γ1 ,
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and

x · ν =

{
|x| on Γ2

0 on Γ1 .

Therefore

1
2

∫
B+

Rα

div[2(∇v̄α · x)∇v̄α − |∇v̄α|2x] dV

=
∫

Γ1

(
n−1∑
i=1

xi
∂v̄α

∂xi

)
∂v̄α

∂ν
+
∫

Γ2

[
|x|

(
∂v̄α

∂ν

)2

− |x|
2

|∇v̄α|2
]

dS

=
∫

Γ1

(
n−1∑
i=1

xi
∂v̄α

∂xi

)
∂v̄α

∂ν
+
∫

Γ2

|x|
2

[(
∂v̄α

∂ν

)2

− |∂tanv̄α|2
]

dS ,

(3.8)

where ∂tan denotes the tangential differentiation on Γ2.
On the other hand,∫

B+
Rα

|∇v̄α|2 = −
∫

B+
Rα

v̄αΔv̄α +
∫

∂B+
Rα

v̄α
∂v̄α

∂ν
.

Therefore, ∫
B+

Rα

Δv̄α(∇v̄α · x)dV − n − 2
2

∫
B+

Rα

|∇v̄α|2 dV

=
∫

B+
Rα

Δv̄α(∇v̄α · x)dV +
n − 2

2

∫
B+

Rα

Δv̄αv̄α dV

− n − 2
2

∫
∂B+

Rα

v̄α
∂v̄α

∂ν
.

Combining (3.7), (3.8), and the above, we have

(3.9)
∫

B+
Rα

Δv̄α(∇v̄α · x)dV +
n − 2

2

∫
B+

Rα

v̄αΔv̄α dV

= J(Rα, v̄α) + I(Rα, v̄α) ,

where

J(Rα, v̄α) =
1
2

∫
Γ2

{∣∣∣∣∂v̄α

∂ν

∣∣∣∣2 |x| − |∂tanv̄α|2|x| + (n − 2)
∂v̄α

∂ν
v̄α

}
dS ,

I(Rα, v̄α) =
1
2

∫
Γ1

{
2

(
n−1∑
i=1

xi
∂v̄α

∂xi

)
∂v̄α

∂ν
+ (n − 2)

∂v̄α

∂ν
v̄α

}
dS .
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Replacing Δv̄α in (3.9) by

Δv̄α = Δhα v̄α − (hij
α − δij)∂ij v̄α + hij

α Γk
ij∂kv̄α ,

we have

−
∫

B+
Rα

(xi∂iv̄α)Δhα v̄α dV − n − 2
2

∫
B+

Rα

v̄αΔhα v̄α dV

+
∫

B+
Rα

(xk∂kv̄α)(hij
α − δij)∂ij v̄α dV −

∫
B+

Rα

(xl∂lv̄α)(hij
α Γk

ij∂kv̄α)dV

+
n − 2

2

∫
B+

Rα

v̄α(hij
α − δij)∂ij v̄α dV − n − 2

2

∫
B+

Rα

v̄α(hij
α Γk

ij)∂kv̄α dV

= −J(Rα, v̄α) − I(Rα, v̄α) ,

where xi∂iv̄α =
∑n

i=1 xi∂iv̄α, and so on, here and in the discussion below. So
far we have not used the equation of v̄α. Now we use equation (3.1) satisfied
by v̄α and obtain

A(hα, v̄α) = −J(Rα, v̄α) − I(Rα, v̄α)(3.10)

where

A(hα, v̄α)

=
∫

B+
Rα

(xk∂kv̄α)(hij
α − δij)∂ij v̄α dV −

∫
B+

Rα

(xl∂lv̄α)(hij
α Γk

ij∂kv̄α)dV

+
n − 2

2

∫
B+

Rα

v̄α(hij
α − δij)∂ij v̄α dV − n − 2

2

∫
B+

Rα

v̄α(hij
α Γk

ij)∂kv̄α dV .

Using (3.2), we have

A(hα, v̄α) = O

(∫
B+

Rα

μα|x|2|∇v̄α| |∇2v̄α| dV

)
+ O

(∫
B+

Rα

μα|x| |∇v̄α|2 dV

)
+ O

(∫
B+

Rα

μα|x| v̄α |∇2v̄α| dV

)
+ O

(∫
B+

Rα

μαv̄α|∇v̄α| dV

)
(3.11)
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We simplify I(Rα, v̄α) by using the equation of v̄α (3.1). It is easy to see
from (3.2) that

∂hα v̄α

∂ν
=

∂v̄

∂ν
+ O(μα|x′| |∇v̄α|) on Γ1 .

It follows that

(3.12) 2I(Rα, v̄α)

=
∫

Γ1

{
2

(
n−1∑
i=1

xi
∂v̄α

∂xi

)
∂hα v̄α

∂ν
+ (n − 2)

∂hα v̄α

∂ν
v̄α

}
dS

+ O

(∫
Γ1

[μα |x′|2 |∇v̄α|2 + μα |x′| v̄α |∇v̄α|]dS

)
.

Using the boundary condition of v̄α in (3.1), we have∫
Γ1

{
2

(
n−1∑
i=1

xi
∂v̄α

∂xi

)
∂hα v̄α

∂ν
+ (n − 2)

∂hα v̄α

∂ν
v̄α

}
dS

=
∫

Γ1

{
2(ξαv̄q−1

α − αμαv̄α)

(
n−1∑
i=1

xi
∂v̄α

∂xi

)

+ (n − 2)(ξαv̄q−1
α − αμαv̄α)v̄α

}
dS

= −2(n − 1)
q

∫
Γ1

ξαv̄q
α dS + (n − 1)αμα

∫
Γ1

v̄2
α dS

+
2
q

∫
∂Γ1

ξαv̄q
α|x|dS −

∫
∂Γ1

αμαv̄2
α|x|dS

+ (n − 2)
∫

Γ1

ξαv̄q
α dS − (n − 2)αμα

∫
Γ1

v̄2
α dS

= αμα

∫
Γ1

v̄2
α dS +

2
q

∫
∂Γ1

ξαv̄q
α|x|dS −

∫
∂Γ1

αμαv̄2
α|x|dS .

Thus

I(Rα, v̄α)

=
αμα

2

∫
Γ1

v̄2
α dS + O

(∫
∂Γ1

(v̄q
α + αμαv̄2

α)|x|dS

)
+ O

(∫
Γ1

[
μα |x′|2 |∇v̄α|2 + μα |x′| v̄α |∇v̄α|

]
dS

)
.

(3.13)
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Clearly

J(Rα, v̄α) = O

(∫
Γ2

(|x| |∇v̄α|2 + v̄α |∇v̄α|)dS

)
.(3.14)

In view of all the above estimates, we rewrite (3.10) as the following
Pohozaev-type identity:

αμα

∫
Γ1

v̄2
α dS

= O

(∫
B+

Rα

μα |x|2 |∇v̄α| |∇2v̄α| dV

)
+ O

(∫
B+

Rα

μα |x| |∇v̄α|2 dV

)
+ O

(∫
B+

Rα

μα |x| v̄α |∇2v̄α| dV

)
+ O

(∫
B+

Rα

μαv̄α|∇v̄α| dV

)
+ O

(∫
Γ2

(|x| |∇v̄α|2 + v̄α|∇v̄α|)dS

)
+ O

(∫
∂Γ1

(v̄q
α + αμαv̄2

α)|x|dS

)
+ O

(∫
Γ1

[μα |x′|2 |∇v̄α|2 + μα |x′| v̄α |∇v̄α|]dS

)
.

(3.15)

We will derive a contradiction from (3.15) by showing that the left-hand
side is much larger than the right-hand side for α large.

LEMMA 3.3 For n ≥ 3, there exists some constant C > 0 independent of α
such that

∫
Γ1

v̄2
α dS > 1/C for all α ≥ 1. Moreover, for n = 3,

∫
Γ1

v̄2
α dS ≥

(log Rα)/C for all α ≥ 1.

PROOF: We only need to prove the lemma for large α. It follows easily
from (3.3) that ∫

Γ1

v̄2
α dS ≥ 1

C
.

For n = 3, it follows from Proposition 3.2 that∫
Γ1

v̄2
α dS ≥ 1

C

∫
∂R3

+∩B
R

1/4
α

(
1

1 + |x|

)2

dS ≥ log Rα

C
.
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LEMMA 3.4 The following estimates hold:∫
∂Γ1

v̄q
α |x| dS ≤ CR1−n

α = C(αμα)n−1 ,∫
∂Γ1

αμαv̄2
α |x| dS ≤ αμαR3−n

α ,∫
Γ1

(μα |x′|2 |∇v̄α|2 + μα |x′| v̄α |∇v̄α|)dS ≤
{

Cμα log Rα n = 3
Cμα n ≥ 4 ,∫

Γ2

(|x| |∇v̄α|2 + v̄α |∇v̄α|)dS ≤ C(αμα)n−2 ,∫
B+

Rα

(μα|x|2 |∇v̄α| |∇2v̄α| + μα|x| |∇v̄α|2)dV ≤
{

Cμα log Rα n = 3
Cμα n ≥ 4 ,∫

B+
Rα

(μα|x| v̄α |∇2v̄α| + μαv̄α|∇v̄α|)dV ≤
{

Cμα log Rα n = 3
Cμα n ≥ 4 ,

PROOF: These estimates follow easily from (3.4), Proposition 3.1, and
some elementary calculations.

PROOF OF THEOREM 0.1: We draw a contradiction from (3.15) by using
Lemmas 3.3 and 3.4 because the left-hand side is clearly much larger than the
right-hand side in (3.15) as α tends to infinity.

Appendix A

Let (M, g) be a smooth, compact Riemannian manifold of dimension n (n ≥ 3)
with boundary. In this appendix we present some weighted Sobolev embedding
inequalities that should be well-known. We include a proof for completeness.

THEOREM A.1 There exists some constant C = C(M, g) such that for all
x0 ∈ M , μ > 0, u ∈ H1(M), u(x) = 0 ∀d(x0, x) < μ, we have(∫

M

|u(x)|p
d(x0, x)2n

dvg

)2/p

≤ C

∫
M

|∇gu(x)|2
d(x0, x)2n−4 dvg

and (∫
∂M

|u(x)|q
d(x0, x)2n−2 dsg

)2/q

≤ C

∫
M

|∇gu(x)|2
d(x0, x)2n−4 dvg ,

where d(x0, x) denotes the distance between x0 and x.
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Theorem A.1 in the case x0 ∈ ∂M follows immediately from Lemma A.2
and Lemma A.4 below. The general case can be proved in a similar way.

LEMMA A.2 For n ≥ 3, there exists some constant C = C(n) > 0 such that
for all u ∈ H1(B+

1 (0)), u ≡ 0 in an open neighborhood of x = 0, we have(∫
B+

1 (0)

|u(x)|p
|x|2n

dx

)2/p

≤ C

∫
B+

1 (0)

|∇u(x)|2
|x|2n−4 dx

and (∫
|x′|<1

|u(x′, 0)|q
|x′|2n−2 dx′

)2/q

≤ C

∫
B+

1 (0)

|∇u(x)|2
|x|2n−4 dx ,

where x = (x′, xn), p = 2n/(n − 2), q = 2(n − 1)/(n − 2), B+
1 (0) = {x ∈

R
n : |x| < 1, xn > 0}.

PROOF: It follows from the hypothesis that for some μ = μ(u) > 0,
u(x) = 0 ∀|x| < μ, xn > 0. Consider

v(y) = u(y/|y|2) , |y| > 1 , yn > 0 .

Clearly
v(y) = 0 ∀|y| > 1/μ , yn > 0 ,

and, for some C(n) > 0,∫
B+

1 (0)

|u(x)|p
|x|2n

dx = C(n)
∫

{|y|≥1,yn≥0}
|v(y)|p dy ,∫

B+
1 (0)

|∇u(x)|2
|x|2n−4 dx = C(n)

∫
{|y|≥1,yn≥0}

|∇v(y)|2 dy ,∫
|x′|<1

|u(x′, 0)|q
|x|2n−2 dx′ = C(n)

∫
|y′|>1

|v(y′, 0)|q dy′ .

It follows from standard Sobolev embedding theorems (with appropriate ex-
tensions of v to |y| < 1) that(∫

{|y|≥1,yn≥0}
|v(y)|p dy

)2/p

+
(∫

|y′|>1
|v(y′, 0)|q dy′

)2/q

≤ C(n)
∫

{|y|≥1,yn≥0}
|∇v(y)|2 dy .

Lemma A.2 follows immediately.
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The following corollary is immediate:

COROLLARY A.3 There exist some constants δ = δ(M, g) > 0 and C =
C(M, g) > 0 such that for all x0 ∈ ∂M , u ∈ H1(M), u ≡ 0 in an open
neighborhood of x0 we have

(∫
B+

δ (x0)

|u(x)|p
d(x0, x)2n

dvg

)2/p

+
(∫

∂M∩B+
δ (x0)

|u(x)|q
d(x0, x)2n−2 dsg

)2/q

≤ C

∫
B+

δ (x0)

|∇gu(x)|2
d(x0, x)2n−4 dvg ,

where B+
δ (x0) = {x ∈ M : d(x0, x) < δ}.

LEMMA A.4 For δ > 0, there exists C = C(M, g, δ) > 0 such that for all
x0 ∈ M , u ∈ H1(M \ B+

δ/2(x0)), we have

(∫
M\B+

δ (x0)
|u|p dvg

)2/p

+
(∫

∂M\B+
δ (x0)

|u|q dsg

)2/q

≤ C

{∫
M\B+

δ/2(x0)
|∇gu|2 dvg +

∫
B+

δ (x0)\B+
δ/2(x0)

u2 dvg

}
.

PROOF: Suppose the contrary of Lemma A.4, namely, that for some δ >
0, there exists a sequence of points {xi} ∈ M , {ui} ∈ H1(M \ B+

δ/2(xi)),
satisfying(∫

M\B+
δ (xi)

|ui|p dvg

)2/p

+
(∫

∂M\B+
δ (xi)

|ui|q dsg

)2/q

= 1(A.1)

and ∫
M\B+

δ/2(xi)
|∇gui|2 dvg +

∫
B+

δ (xi)\B+
δ/2(xi)

u2
i dvg <

1
i

.

It follows that
‖ui‖H1(M\B+

δ/2(xi)) ≤ C

and

lim
i→∞

{∫
M\B+

δ/2(xi)
|∇gui|2 dvg +

∫
B+

δ (xi)\B+
δ/2(xi)

u2
i dvg

}
= 0 .(A.2)
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After passing to some subsequence, we have that ui converges weakly to u
in H1(M \ B+

δ/2(xi)). In view of (A.2), u ≡ 0. It follows from the compact

embedding of H1 into L2 that∫
M\B+

δ/2(xi)
u2

i → 0 .

This, together with (A.2), yields

‖ui‖H1(M\B+
δ/2(xi)) → 0

which contradicts (A.1) because of the Sobolev embedding theorems. Lemma
A.4 is established.

Appendix B

For n ≥ 3, let B1 denote the unit ball in R
n, and let g = gij(x)dxi dxj be a

C2-metric on B1 with gij(0) = δij and ∂gij

∂xk
(0) = 0 for all 1 ≤ i, j, k ≤ n.

Let K ∈ L∞(B1).

PROPOSITION B.1 There exists some constant τ1 > 0 depending only on
n, ‖gij‖C2(B1), and ‖K‖L∞(B1) such that for all 0 < τ ≤ τ1, there exists
some function G(y) = |y|2−n + E(y) satisfying{

−ΔgG + K(y)G = n(n − 2)ωnδ0 in Bτ \ {0}
G = 0 on ∂Bτ ,

(B.1)

where ωn is the volume of the unit ball in R
n and E satisfies the following:

For all 0 < ε < 1, there exists some constant C(ε) depending only on ε, n,
‖gij‖C2(B1), and ‖K‖L∞(B1) such that

|y|n−4+ε|E(y)| + |y|n−3+ε|∇E(y)| ≤ C(ε) ∀y ∈ Bτ , n ≥ 4 ,

and

|y|ε−1|E(y) − E(0)| + |y|ε|∇E(y)| ≤ C(ε) ∀y ∈ Bτ , n = 3 .

REMARK B.2 In fact, such G is unique.

PROOF: The existence of τ1 > 0 is well-known; see, for example, [7].
Clearly (B.1) is equivalent to{

−ΔgE + K(y)E = O(|y|2−n) in Bτ

E = −τ2−n on ∂Bτ .
(B.2)
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Since |y|2−n ∈ Lr(Bτ ) for all r < n/(n − 2), it is well-known that (B.2)
has a unique solution E ∈ W 2,r(Bτ ). It follows from the Sobolev embedding
theorems that

‖E‖Ls(Bτ ) ≤
{

C(s) ∀s < n
(n−4) , n ≥ 5 ,

C(s) ∀ s < ∞ , n = 4 ,

and

‖E‖C1−ε(Bτ ) ≤ C(ε) ∀0 < ε < 1 , n = 3 .(B.3)

For 0 < r ≤ τ/5, x ∈ A0 = {x : 1
5 ≤ |x| ≤ 5}, set

E1(x) =

{
rn−2E(rx) n ≥ 4
rn−2(E(rx) − E(0)) n = 3 .

Then E1 satisfies

−ΔhE1(x) + K(rx)r2E1(x) = O(r2) x ∈ A0 ,

where |O(r2)| ≤ Cr2 with C independent of r and h = hij(x)dxi dxj =
gij(rx)dxi dxj . For n ≥ 4, for all 0 < ε < 1, we can choose some s1 =
s1(ε) < n/(n − 4) such that

‖E1‖Ls1(A0) ≤ r2−ε‖E‖Ls1(Bτ ) ≤ C(ε)r2−ε .

Using the equation of E1 and applying the bootstrap method finite times (using
the Lp theory of elliptic equations and the Sobolev embedding theorems, see
e.g., [17]), we have

|E1(x)| + |∇E1(x)| ≤ C(ε)r2−ε ,
1
2

≤ |x| ≤ 2 .

Consequently,

|y|n−2|E(y)| + |y|n−1|∇E(y)| ≤ C(ε)|y|2−ε , |y| ≤ τ

5
.

This establishes Proposition B.1 in the case n ≥ 4. For n = 3, we know from
(B.3), for all 0 < ε < 1, that

|E1(x)| ≤ C(ε)r2−ε ∀x ∈ A0 .

It follows from the equation of E1 and standard elliptic estimates that

|∇E1(x)| ≤ C(ε)r2−ε ∀1
2

≤ |x| ≤ 2 .
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Consequently,

|y| |E(y) − E(0)| + |y|2 |∇E(y)| ≤ C(ε)|y|2−ε , |y| ≤ τ

5
.

Proposition B.1 is thus established.

Acknowledgement. We thank H. Brezis for his interest in the work as
well as for informing us about the work of Adimurthi and Yadava [1] while
we were working on this paper. Part of this work was completed while the first
author was visiting the Courant Institute; he would like to express his thanks
to L. Nirenberg for the arrangement and his kind hospitality. The first author
appreciates the support from the Alfred Sloan Foundation and from National
Science Foundation Grant DMS-9401815.

Bibliography

[1] Adimurthi and Yadava, S. L., Some remarks on Sobolev type inequalities, Calc. Var. Partial
Differential Equations 2, 1994, pp. 427–442.

[2] Atkinson, F. V., and Peletier, L. A., Elliptic equations with nearly critical growth, J.
Differential Equations 70, 1987, pp. 349–365.

[3] Aubin, T., Espaces de Sobolev sur les variétés Riemanniennes, Bull. Sci. Math. (2) 100,
1976, pp. 149–173.

[4] Aubin, T., Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry
11, 1976, pp. 573–598.

[5] Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science] No.
252, Springer-Verlag, New York–Berlin, 1982.

[6] Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality,
Ann. of Math. (2) 138, 1993, pp. 213–242.

[7] Berestycki, H., Nirenberg, L., and Varadhan, S. R. S., The principal eigenvalue and maxi-
mum principle for second-order elliptic operators in general domains, Comm. Pure Appl.
Math. 47, 1994, pp. 47–92.

[8] Brezis, H., and Lieb, E. H., Sobolev inequalities with remainder terms, J. Funct. Anal. 62,
1985, pp. 73–86.

[9] Brezis, H., and Nirenberg, L., Positive solutions of nonlinear elliptic equations involving
critical Sobolev exponents, Comm. Pure Appl. Math. 36, 1983, pp. 437–477.

[10] Brezis, H., and Peletier, L. A., Asymptotics for elliptic equations involving critical growth,
pp. 149–192 in: Partial Differential Equations and the Calculus of Variations, Vol. I,
Progress in Nonlinear Differential Equations and Their Applications No. 1, Birkhäuser
Boston, Boston, 1989.

[11] Carleson, L., and Chang, S. Y. A., On the existence of an extremal function for an in-
equality of J. Moser, Bull. Sci. Math. 110, 1986, pp. 113–127.



464 Y.Y. LI AND M. ZHU

[12] Chang, S.-Y. A., Gursky, M. J., and Yang, P. C., The scalar curvature equation on 2- and
3-spheres, Calc. Var. Partial Differential Equationss 1, 1993, pp. 205–229.

[13] Cherrier, P., Problèmes de Neumann non linéaires sur les variétés Riemanniennes, J. Funct.
Anal. 57, 1984, pp. 154–206.

[14] Escobar, J. F., Uniqueness theorems on conformal deformation of metrics, Sobolev in-
equalities, and an eigenvalue estimate, Comm. Pure Appl. Math. 43, 1990, pp. 857–883.

[15] Escobar, J. F., Conformal deformation of a Riemannian metric to a scalar flat metric with
constant mean curvature on the boundary, Ann. of Math. (2) 136, 1992, pp. 1–50.

[16] Escobar, J. F., Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37,
1988, pp. 687–698.

[17] Gilbarg, D., and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order,
2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences] No. 224, Springer-Verlag, Berlin–New York, 1983.

[18] Han, Z.-C., Asymptotic approach to singular solutions for nonlinear elliptic equations
involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 1991,
pp. 159–174.

[19] Hebey, E., Optimal Sobolev inequalities on complete Riemannian manifolds with Ricci cur-
vature bounded below and positive injectivity radius, Amer. J. Math. 118, 1996, pp. 291–
300.

[20] Hebey, E., and Vaugon, M., The best constant problem in the Sobolev embedding theorem
for complete Riemannian manifolds, Duke Math. J. 79, 1995, pp. 235–279.

[21] Hebey, E., and Vaugon, M., Meilleures constantes dans le théorème d’inclusion de Sobolev,
Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 1996, pp. 57–93.

[22] Kazdan, J. L., and Warner, F. W., Remarks on some quasi-linear elliptic equations, Comm.
Pure Appl. Math. 28, 1975, pp. 567–597.

[23] Li, Y.Y., The Nirenberg problem in a domain with boundary, Topol. Methods Nonlinear
Anal. 6, 1995, pp. 309–329.

[24] Li, Y.Y., Prescribing scalar curvature on Sn and related problems, I, J. Differential
Equations 120, 1995, pp. 319–410.

[25] Li, Y.Y., Prescribing scalar curvature on Sn and related problems, II. Existence and
compactness, Comm. Pure Appl. Math. 49, 1996, pp. 541–597.

[26] Li, Y.Y., and Zhu, M., Uniqueness theorems through the method of moving spheres, Duke
Math. J. 80, 1995, pp. 383–417.

[27] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear
equation, Studies in Appl. Math. 57, 1976/77, pp. 93–105.

[28] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,
Ann. of Math. 118, 1983, pp. 349–374.

[29] Lions, P.-L., The concentration-compactness principle in the calculus of variations, The
limit case, II, Rev. Mat. Iberoamericana 1, 1985, pp. 145–121.

[30] Moser, J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20,
1970/71, pp. 1077–1092.

[31] Rey, O., Proof of two conjectures of H. Brézis and L. A. Peletier, Manuscripta Math. 65,
1989, pp. 19–37.

[32] Schoen, R., On the number of constant scalar curvature metrics in a conformal class,
pp. 311–320 in: Differential Geometry, Pitman Monographs and Surveys in Pure and
Applied Mathematics No. 52, Longman Scientific & Technical, Harlow, 1991.



TRACE INEQUALITY 465

[33] Schoen, R. and Zhang, D., Prescribed scalar curvature on the n-sphere, Calc. Var. Partial
Differential Equations 4, 1996, pp. 1–25.

[34] Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110, 1976,
pp. 353–372.

[35] Trudinger, N., On imbeddings into Orlicz spaces and some applications, J. Math. Mech.
17, 1967, pp. 473–483.

[36] Zhang, D., New results on geometric variational problems, Thesis, Stanford University,
1990.

YANYAN LI MEIJUN ZHU

Department of Mathematics Department of Mathematics
Rutgers University University of British Columbia
New Brunswick, NJ 08903 Vancouver, BC
E-mail: CANADA V6T 1Z2
yyli@math.rutgers.edu E-mail: mzhu@math.ubc.ca

Received April 1996.


