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Abstract

In this paper, we establish some sharp Sobolev trace inequalities on n-dimensional, compact
Riemannian manifolds with smooth boundaries. More specifically, let

¢=2(n—1)/(n—2), %—inf{/w |Vul® : Vu € L*(RY}), /dR u|? = 1} :
+ +

We establish for any Riemannian manifold with a smooth boundary, denoted as (M, g), that
there exists some constant A = A(M,g) > 0, ([,,, [ul? dsg)?? < S [y |Voul? dug +
Al oM u® ds,, for all uw € H'(M). The inequality is sharp in the sense that the inequality is
false when S is replaced by any smaller number. © 1997 John Wiley & Sons, Inc.

0 Introduction

It is well-known that sharp Sobolev-type inequalities are important in the study
of partial differential equations, especially those that arise in geometry and
physics. There has been much work on such inequalities and their applications
(see, for example, Trudinger [35], Moser [30], Aubin [3], Talenti [34], Lieb
[27, 28], Brezis-Nirenberg [9], Cherrier [13], Brezis-Lieb [8], Carleson-Chang
[11], Escobar [14, 16], Beckner [6], Adimurthi and Yadava [1], Hebey and
Vaugon [21, 20], Hebey [19], and the references therein).

For n > 3, it was shown by Aubin [3] and Talenti [34] that, for p =
2n/(n — 2),

1 [ Vul?

— = inf{ifR [V
S1 (Jgn lulP)2/P
is achieved and the extremal functions are found. In particular,

1 I'(n/2)\ "
(A) 5 - m™m(n — 2) ( () ) .

u € LP(R™)\ {0}, Vu € L2(R”)}
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It was shown by P. L. Lions [29] that, for ¢ = 2(n — 1)/(n — 2),

2
{ fRi |Vu|

(faRﬁ u|9)?/4

is achieved. The extremal functions were found independently by Escobar [16]
and Beckner [6]. In particular,

(0.1) % — inf

Vu € L*(R}), u € LY(IRY) \ {o}}

(B) 1 n__201/(n*1)

S 2 " ’

where o, denotes the volume of the unit sphere in R".

In this paper we study some Sobolev-type trace inequalities on Riemannian
manifolds with boundaries. Throughout this paper we denote p = 2n/(n — 2),
g=2(n—1)/(n—2),and S; and S as in (A) and (B), respectively.

THEOREM 0.1 (Main Theorem) For n > 3, let (M, g) be some smooth n-
dimensional, compact, Riemannian manifold with a smooth boundary. Then
there exists some constant A = A(M, g) > 0 such that, for all w € H' (M),

2/q
0.2) </ |u\qug> < S/ IV ul? dv, +A/ u® dsy
oM M oM

where dv, denotes the volume form of (M, g) and dsg denotes the induced
volume form on OM.

REMARK 0.2 The constant S in front of [, |[V4u|? dvy is sharp. It cannot
be replaced by any smaller number.

REMARK 0.3 In general, [, u®ds, cannot be replaced by [, u"ds, for
r < 2. For instance, this is the case for any bounded domain in R™ with the
flat metric.

REMARK 0.4 The above theorem in the special case n > 5 and (M, g) a
bounded, smooth domain in R™ with the Euclidean metric was obtained by
Adimurthi and Yadava in [1]. Our method in proving Theorem 0.1 is different
from theirs.

REMARK 0.5 Clearly we only need to consider the case when M is con-
nected. Throughout the paper, we assume this.

The present work is stimulated by some recent work of Hebey and Vaugon
[21], where they proved a conjecture of Aubin [4]: For n > 3 and (M, g) any
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smooth n-dimensional, compact manifold without boundary, there exists some
constant C' > 0 such that, for all u € H'(M),

2/p
(0.3) </ |ulP dvg> < Sl/ IV gul? dv, + C/ u? dv, .
M M M

One of the main ingredients in their proof of (0.3) is, through the Moser
iteration technique, to obtain an appropriate upper bound for blowup minimum-
type solutions to certain critical exponent equations with the zero Dirichlet
boundary condition. Such asymptotic analysis was obtained by Han in [18],
using the Moser iteration technique, for blowup minimum-type solutions to
certain critical exponent equations with the zero Dirichlet boundary conditions
in general domains in R™, which extend results of Atkinson and Peletier [2]
and Brezis and Peletier [10] on balls in R™. Such extension was conjectured
by Brezis and Peletier and was proven by Rey [31] using a different method.

During the past few years, energy-independent asymptotic analysis for
blowup solutions to certain critical exponent equations has been obtained. See
Schoen [32], Zhang [36], Chang, Gursky, and Yang [12], Li [24, 25, 23],
Schoen and Zhang [33], and the references therein.

As in [21], one of the main ingredients in our proof of Theorem 0.1 is
some asymptotic analysis for blowup minimum-type solutions. However, we
need to overcome new difficulties since what we encounter here are certain
nonlinear Neumann boundary conditions rather than zero Dirichlet boundary
conditions as in [18] and [21]. Moreover, Theorem 0.1 for n = 3 is subtler:
In addition to the upper bound of solutions obtained by the Moser iteration
technique, we also need to obtain an appropriate lower bound.

Another main ingredient is local balance checking via the Pohozaev iden-
tity. Using similar methods, we have established some other Sobolev-type
inequalities. In particular, we have extended theorem 1 in [1] from dimension
n > 5 to n > 3. This will be addressed in a forthcoming paper.

1 Preliminary Estimates

We first present two weaker inequalities from which one can deduce that
minimum-type solutions can blow up at only one point. Although this step is
well-known, we include a proof here for the reader’s convenience.

PROPOSITION 1.1  For all € > 0, there exists some constant B(e) depending
only on ¢, M, and g such that
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2/q
(/ || d59>
oM

S(S—l—&?)/ |Vgu\2dvg+B(5)/ u?dv,, Yue HY(M).
M M

PROOF: By partition of unity, it follows easily from (0.1). We omit the
details. |

PROPOSITION 1.2 For all € > 0, there exists some constant A(e) depending
only on g, M, and g such that for all u € HI(M),

2/q
(1.1) (/ ]u\qug> < (S+€)/ |V gul? dv, —l—A(s)/ u® dsy .
oM M oM

PROOF: We prove this proposition using an argument by contradiction.
Suppose the contrary of (1.1), namely, that there exists some constant § > 0
such that for all o > 1,

2 2
12 o= JulVeld ooty L
H(M)\{0} (fopr lula dsy)?/a S

Claim. There exists some nonnegative function u, € H*(M) satisfying

(1.3) §a:/ \Vgua]2dvg+a/ uZ dsg, / ul dsg=1.
M oM oM

PROOF OF CLAIM: We sketch this well-known proof for the reader’s con-
venience. Let {u("} be a minimizing sequence with

1/q
Hu(m)\lq,aM - (/ ,u(m)|q dsg> =1
oM

and (™ > 0. Clearly, ||u(™| my < C. After passing to a subsequence,
u(™) converges weakly to some u € H'(M), u > 0. It is not difficult to see

that
/ <\u(m)]q — Jutm — u|q) dsg = / uldsg+o(1),
oM oM

and consequently

/ |u(m) —ulldsy < 140(1), / uldsy <1,
oM oM

where o(1) denotes some quantity tending to zero as m tends to oo.



TRACE INEQUALITY 431

Therefore, by the Sobolev embedding theorems and Proposition 1.1, we
have, for g9 > 0,

- / Va1 a / ™2 4 o(1)
M oM
_ / V(™ —w)? + / Vul? + aful3 o + o(1)
M M

= [ we s FE [ s [
M S+eo)u M

+ a[ull3 53 + 0(1)

1 (m) 2/q 2/q
> u\"™ — |4 + a(/ uq> + o(1
S+ ¢eo </8M‘ |> ¢ oM W)
1
(m) _ . 1q q 1
S+50/6M|u ul +§a/aMu + o(1)

(Lt (m) _
(30— [ 1™~ g+ o).

Choose g > 0 small so that ﬁeo — &, > 6/2; we have from the above that

>

Jonr |ul™ — u|? = o(1). It follows easily that u is a minimum of (1.2). N

Now let u,, be some nonnegative function in H'(M) satisfying (1.3). It
is easy to see from (1.3) that ||ua /|| g1(ar) is bounded by some constant inde-
pendent of «. It follows that, after passing to some subsequence, u, weakly
converges to some 7 € H'(M). This leads to

(1.4) / e — T|* duy +/ lug —@|* dsy = o(1),
M oM

and therefore, in view of (1.3),

(1.5) u=0 ondM.

Here and in the following, o(1) denotes some quantity tending to zero as «
tends to oo.
Therefore, by Proposition 1.1, (1.4), and (1.5), we have, for g9 > 0,

§a:/ \Vua\Q—i-a/ ]ua\Q
M oM

- / V(o — W) + / VAP + afualZ o + (1)
M M
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v

/ 1V (e — W)+ 0(1)
M
1

2/q
> —ul? 1
> ot ([ ha-it) o)

1
= 1).
S+€0+0()

Sending « to co, we obtain from the above and (1.2) that

1 1
——06> .
S S+ g
Sending ¢ to zero, we reach a contradiction. |

2 Asymptotic Analysis

From now on, we begin to prove Theorem 0.1 through an argument by con-
tradiction. Suppose the contrary of Theorem 0.1 is true; then we have, for all
a>1,

1

S )

where &, is defined in (1.2). As in Section 1, there exists some nonnegative
function u, € H'(M) satisfying (1.3). It follows that u,, satisfies

2.1 o <

—Agua =0 in M
2.2) {8%’1;a _ gaug_l —au, on oM.

In this section we establish, by using the Moser iteration technique, an appro-
priate upper bound for u,,.

For all € > 0, it follows from (1.3), (2.1), and Proposition 1.2 that there
exists some A(e) such that

142> (S+6e)a
S
= (S +&)|IVguall3 ar + (S + &)l|uall3 orr

> ( /8 ; \uaq)z/q + [alS +) = A@)] ualZon

=14 [a(S+¢e)— A(e)] \|Ua||%,aM~
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Sending « to co, we have

(S+¢)liminfé, >1 and 1+ % >14+(S+e¢) limsupa||ua||§’aM.

Qa—00 a—00

Sending € to 0, we have, by using (2.1), that

, 1
(2.3) Jim & = g
and
(2.4) lm of|uall3gn = 0.
a—0o0

PROPOSITION 2.1  There exists T, € OM such that for all 6 > 0,
lim ul =1.
0 J Bs(Ta)NOM

Before proving the previous proposition, we present a well-known lemma
(see, e.g., [5] for results of this type).

LEMMA 2.2 Suppose {yo} € OM for a sequence of o — oo satisfies, for
some 0 < B<1,6 >0,

2.5) / ul < 6.
B&(ya)maM

Then

(2.6) lim ul =0.

a0 B§/2 (Ya)NOM

PROOF: Let n =1, € C*°(M) be some cutoff function satisfying
0 in M\ Bs(ya)

and

Vgnl +[Vgnl < C(6,M,g).
For 1 < r < ¢ — 1, multiplying the first equation in (2.2) by n?u’, and
integrating by parts, we obtain, by using the boundary condition of u, in
(2.2), that

/ Vgta - Vg(n*ul,) dvg = fa/ n*ul " ds, — a/ n*ult dsg .
M oM oM
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Direct calculation yields
/ Vo - Vg (n2u2)dvg
M
4r r—1
- (r+1)/2)12 4 7/ TN (n2) d
(2-7) (T—I— 1)2 /M ‘vg(ua 77)‘ Ug + (T’—i— 1)2 Mua 9(77 ) 'Ug

r +1 2 r—1 / +19(1%)
- | dvy — ri1Z00 ) g
(7‘+1)2/MUO‘ Vonl™dvs = 5y J e ~aw %

It follows that

[ 19

r—1 r+1 2 1 9 T—1 18(772)
— A 1|y r+19%\1")
= [+ [ Val e  anted

+fa(T+1)2/ uq—1+r772_04(7“+1)2/ urHp?
4r oM @ 4r OM @

2
S ga(’l"—Fl) / ug[_1+r772+0(6,7“) {/ UZ+1 +/ ug—‘rl} .
4r oM M oM

Using (1.3), the fact that r+1 < g < p, and the Sobolev embedding theorems,
we know that

r—+1 r+1
[t [
M oM

(r+1)/2
(2.8) gc(r,M){/ yvgua\2+/ ug}
M oM

<C(r,M).

Consequently,

@ 1)?
(2.9)/ ‘Vg (ugﬂ)ﬂn)lz < w/ ugt_l'”nQ + C(6,r, M).
M 4r oM

Applying Holder’s inequality and then Proposition 1.1 to u = ugﬂ)/ 27] gives,

for all € > 0,

(2.10) / udry?
oM

(¢—2)/q 2/q
<(/ ) ([ )
Bé(ya)ﬂaM oM
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(4-2)/q
< </ u‘é) (S+ E)HVg (ugﬂ)/zn)
Bs(ya)NOM

+ B(e) AR TN
: </Bg(ya)maMua> Hua n)H2,M'

Using the fact that 5 < 1, we now fix some r € (1,¢— 1] and € > 0 satisfying

2

2,M

’

S+e Bla=2)/a M <1

— €.
S —¢ 4r

Consequently, in view of (2.3), we have for o large

2
£al(S +¢) pla—2/a (7’?:71) <1-—
T

Combining (2.9), (2.10), (2.8), (2.5), and the above, we obtain

2.11) / |V, (u+20) [P < C(6,r,¢, 8, M).
M

It follows from the Sobolev embedding theorems, (2.8), and (2.11) that

/ u&r+1)Q/2
B6/2(ya)ﬂaM
= / (u+072n)1
oM

< OO {95 () 1+ [0l

(2.12)

< C(6,r,B,e,M).

Since (r + 1)q/2 > g, we can derive (2.6) from (2.4), (2.12), and Holder’s
inequality. Lemma 2.2 is thereby established. |

PROOF OF PROPOSITION 2.1: For z € OM, we define 6, , > 0 by

1
(2.13) / ul = .
Bs, o (2)NOM 2

Clearly, inf,cons 0z, > 0. We pick T, € OM satisfying

(2.14) 600 €2 inf by
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We claim that {Z,} satisfies the property stated in the proposition. Suppose
the contrary; then there exists some 6 > 0, 0 < 8 < 1, and a sequence of

o — 0o such that
/ ut <.
Bs(Ta)NOM

This, according to Lemma 2.2, implies

lim ul =0.
@7 JBs 2 (Ta)NOM

Therefore, in view of (2.13), we have for large «

5 o

To,ox 5

This, together with (2.14), yields for large o

(2.15) Op.a >

B o

, VYxeoM.

Clearly, | J,cgps Bs/s() is an open cover of M. Due to the compactness of
OM, there exist x1,..., %, € OM such that OM C |2, By s(xi). We see
from (2.15) and (2.13) that

/ 4 < 1 1<i<m.
36/4(@)081\4 2’

We can then apply Lemma 2.2 with 6 replaced by 6/4, 5 = 1/2, and y, = x;
to conclude that

lim ud < lim / =0.
a— Jom O‘HWZ Bgs/s xl)ﬂaM
This contradicts (1.3). Proposition 2.1 is thus established. |

Let z, € M be some maximum point of u,, that is,

U (To) = Max Uy -
M

It follows from the maximum principle that x, € OM unless u,, is identically
equal to a constant. It is easy to see from (1.2) and (1.3) that u, is not
identically equal to a constant for « large. Therefore, z, € OM for large
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a. Set fiq = uq(zq) 22, Since ag,j" (zo) > 0, we see from (2.2) that
QU (T4) < Eqtin(m4)?7L, that is,

(2.16) apg < €o < C.
It follows that
lim po =0.
a—0o0
Let (y',...,y" 1, 4™) denote some geodesic normal coordinates given by

the exponential map exp, ~with % being the unit inner normal of M at

y = 0. In this coordinate system, the metric g is given by g¢;;(y) dy' dy’. For
suitably small 4; > 0 (independent of «), we define v, in a neighborhood of
z =0 by

Va(2) = ua(xa)_lua(expma (haz)), z€ 04 CR™,

where

(2.17) On = {z eER": |z| < 2—1, exp,, (HaZ) € M} .

a
We write 00, = '}, UT2, where
I, ={2€00,:exp, (taz) € OM},
I2 = {2 €00, : exp,_ (paz) € M}.
It follows from (2.2) that v,, satisfies
—Ag, Vo =0 in Oy

(2.18) Oaava — ¢ 03! — v, on T}

V(0) =1, 0<uv, <1,

where g, denotes the metric on O,, given by go = gi;(1ta?) dz' dz7. 1t follows
from (2.18), (2.16), and standard elliptic estimates (see, e.g., [17]) that for all
R>1,

(2.19) lvalles(prio,) < C(R), Ya>1.

Notice that because v,(0) = 1, we know from (2.19) that

{fBl(o)mF}l vg dsg, > 1/C >0

(2.20)
fBl(O)mFg v2 dsg, >1/C > 0.
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It follows from the first inequality in (2.20) and Proposition 2.1 that

2.21) lim |ze — Ta| =0.

a—00

By change of variables, we have

2 2 _ 2
ol ons = a I
B (®a)NOM B,NT}

We derive from (2.4), the second inequality in (2.20), and the above that

(2.22) lim apq, =0.

a—00

It follows from (2.19) that there exists v € C?(R[) such that along some
subsequence,

(2.23) lim JJoa = vllcapprp,) =0, VE>0,

where Bg = {2z € R" : |z| < R}. Clearly, in view of (2.18), (2.22), and (2.3),
v satisfies

A’U = O in Rﬁ_
(2.24) gu = Lyt on OR"
v(0)=1, 0<wv<l.

It follows from our earlier work [26] that

(st N\
(2.25) v(2', 2n) = <|z’|2+(2n+(n_2)s)2> 7

where 2/ = (21,...,2n-1).
Due to the uniqueness of the limit function v, we know that (2.23) holds
for the full limit o — oc.

PROPOSITION 2.3 For 61 = 61(M, g) > 0 small enough,
lim |vg —v|T=0.

a—00 Fl
@

PROOF: Multiplying (2.24) by v and integrating by parts, we have

1
/ |Vo|? = = ve.
R? S Jorn
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We also know that v is a minimum of (0.1), namely,

2/q
s [ |vop= </ uq> |
R OR™

Thus,

(2.26) / vl =1.
OR™

It follows from (2.21) and Proposition 2.1 that

(2.27) lim [ o= lim ul =1.
a—00 F}x a—00 B61 (za)ﬂaM

It is easy to see from (2.26) and the explicit form of v in (2.25) that

lim vl =1.
a—oo Jpi1
«

Therefore, for all € > 0, there exists R = R(¢) > 1 such that for « large,

(2.28) / vi>1-—¢, / v? < 2¢e.
LLNBR I3\Br

Consequently, using the strong convergence of v, to v given in (2.23), we
have, for o large, that

(2.29) / lva —v|? < e, / vl >1—2e.
I'LNBgr LiNBr
We derive from (2.27) and the second inequality in (2.29) that for large «,
(2.30) / vl < 3e.
Ti\Br

Combining the first inequality in (2.29), (2.30), and the second inequality in
(2.28), we have for large « that

/ |va—v|q§/ |va—v|q—|—2q/ vg+2q/ v?
r I'lNBg I'L\Bg Il\Bg

< (14293,
Proposition 2.3 follows immediately. |

1
e
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Recall that the conformal Laplacian operator L, and the conformal bound-
ary operator B, are given by (see, e.g., [15])

L!ﬂ/} = qu/’ - a(n)qu/;
Byt = %2 + b(n)Hyy,

where a(n) = 4(';—__21), b(n) = 252, R, is the scalar curvature of M, and H,

is the mean curvature of M with respect to the inner normal of OM (e.g.,
the unit ball in R™ has positive mean curvature).

Let ¢ be some C2-positive function on M, and let § = ("2 g It is
well-known (see, e.g., [15]) that for all 1» € H'(M),

{ (1)) = D=2 L () in M
(2.31) /(- 2
B;(/¢) = /=2 B, (4) on OM .

Rewrite (2.2) as
Aguq =0 in M
232) Yy b(n) Hya
= oud ™ — aug + b(n)Hgu, on OM .
Setting w, = uq /¢, it follows from (2.31) that

Aguq — a(n)Rguq

— S0(71-i-2)/(’fl—2) (Agwa — a(n)nga) in M
(2.33)

Oaa 1 p(n) Hyu,
= n/(n— 2)(8%% + b(n)Hywa) on OM .

We will choose an appropriate ¢ = ¢, and then apply the Moser iteration
technique to show that w,, is bounded above by some constant independent of
a. Without loss of generality, we assume (M, g) is a smooth, bounded open
set of a slightly larger Riemannian manifold (]\7 ,g). Let v be the geodesic
in M with 4(0) = 24, 7(0) = v. Set Py = (tapa) with tq = (n — 2)/&a-

Let (y',...,y" 1 y") be some geodesm normal coordinate system of 1p, M
with i = —(tatta) expp, : Tp, M — M denoting the exponential map,
and gl-]( = <8y1, ay]> denoting the metric of M, with g;;(0) = 6;; and

Ffj(()) = 0, where Ffj is the Christoffel symbol. We define Gp, by

—Anga == n(n - 2)wn6pa in M
Gp, =0 on OM |
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where w,, is the volume of the unit ball in R™. It follows from Appendix B
that

Gp, oexpp, (y) =y ™" + E(y),
where E(y) satisfies

234 "B+ "I VeE(y) < C61), Yyl <61
Define ¢, : M — R by
Do = t272lulén72)/2GP )
Clearly, ¢, satisfies
—Agpq =0 in M.

PROPOSITION 2.4 There exists some constant C' depending only on (M, g)
such that for all o > 1,
Ug < Cpo on M.

PROOF: We only need to prove the proposition for « large. Set w, =

U/ o and § = 90‘0*/(”‘2)9. Equation (2.33) holds in M for ¢ = ¢,. Setting

1 = = p, in (2.31), we have
o35 AN — Ry P =0 in M

' e 1 b(n)Hypo = b(n) Hyon! "™ on 0M .
Combining (2.32), (2.33), and (2.35), we have

Ajwy = in M ,
(2.36){ GWw 0 in

dywa - ~2/(n— o, —n/(n-
Oite = gl — (apa ") 4 Qe oYy, on OM

We need the following lemma to simplify (2.36):
LEMMA 2.5 For « large,

a2/ (=2) %%n/(n—@ >0 on M.

PROOF: Clearly Lemma 2.5 is equivalent to

0
(2.37) %% < o, on OM.
ov
Let 0 < 62 < 61. It is clear from the proof how small we need 62 to be.

It is independent of «. Notice that Gp, is bounded below by some positive
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constant independent of v in M \ B, (x4 ); also, the absolute values of its first
derivatives are bounded above by some constant independent of « in the same
region. It is clear that (2.37) holds in M \ Bs,(z,) for large a.

In the y-coordinate, OM near z, is given by

Y = tafla + f(y/) ) ’y/’ <61,

with f(0) =0, [V2f(y)] < C(61), V]y'| < 61 By the choice of coordinates,
% is orthogonal to the tangent space of M at x,, which is spanned by
gyfi (O)By”’ 1 <4< n—1. Consequently, for 1 <:<n—1,

af Gin 2
I ou2).
50 = =2 — 02

It follows from the mean value theorem that

/:O /12 20,/
038 S) = O +umlyl)
W) =0(y|+p2), 1<i<n—1.

Therefore,

(2.39) pa <Clyl, Yyl <61, ¥ =tapta + f(y).

It is not difficult to see that at expp_ (', tapia + f(¥')) € OM,

of 0 19,
—Z / (I +122).

oyt Oyt Oy"
89006 n—2, (n—2)/2, 1 n
(2.40) 9y —(n —2)t3 "y y'lyl™

It is easy to see from the definition of ¢, and (2.34) that
(2.41) Paly) = CTHl IRy < 6.

It follows that for all |y| < 62, y™ = tapa + f(y'), we have

898004 _ _ = 1189004 a
o Vopa v = Z oyt 8y
(2.42) Li=1
&pa
([y[IVepal) -
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Also, from (2.34), (2.40), and (2.41), we have that
243)  [ylIVeal < Cvaly), Yyl < b2, y" = tapa + f()-
Combining (2.42) and (2.43), we have

0P 0paq
A4y Xo > o
R

Coaly), Yyl <é1, y" =tapa + ().
It follows from (2.34) and (2.41) that
plIPRIVE(y)| < Coaly) .-

Using (2.38) and the above, we have, for |y| < 61, y™ = tapa + f(v/), that

a [e% n— n— n —-n
—af; > (n—=2)t5 2l P2y "y " = Cpaly)

= (n =2t 2pl D2 (i) |y "

+ (n =20 2u D2 £ () |y T — Cpaly)
> (n— 2t 222 (40 [y T — Cpaly)

> —Cpa(y) .

Lemma 2.5 follows from (2.44) and the above since, as pointed out earlier,
(2.37) easily holds in M \ Bs,(z,) for large a. |

It follows from Lemma 2.5 and (2.36) that w,, satisfies

(2.45) {Agwa =0 in M

a%wa < gangl on OM .

v

Let n be some smooth, nonnegative cutoff function. Multiplying (2.45) by
wkn? for k > 1 and integrating by parts, we obtain

/ ngan(w§n2)dvg < ﬁa/ wg_Han dsg .
M oM
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Here and in the following, C' denotes some constant independent of «. As in
(2.7), we have

/ Viwa Vg (wﬁnQ)dvg
M
4k 2 k—1
ETE /M |V (i) " dug + hr1)? /M w2y () dv

4k k41w, |2 k-1 k+18g(772) R
(k+1)2 /M“’a Varldog = Gy [, e "aw B0

We deduce from the last two formulae that

2
[ Va2 g
k-1 k1 2 k+1 2
(246) < === | wa Ag(n)dvy + | we |V gnlTdug

k-1 k1 95(n%) Ealk +1)° / —1tk
—_— —————ds; + ————— kp2 s,

+ 4k OM Ya ov %9 + 4k OM Ya 45

We still need the following lemma to start the Moser iteration process:

LEMMA 2.6 There exists some 0 < 69 < 1, sg > ¢q, and C > 1 independent
of a such that

(2.47) w dsy < C.

/aM\BM /60 (@a)

PRrROOF: For all € > 0, it follows from Proposition 2.1 and Proposition
2.3 that there exists 0 < 89 = dp(¢) < 1 such that

/ wgd3g:/ ul dsg < €.
OM\B (za) aM\Bua/?’o (za)

Since §" ~ p26" in By, /5, (2a) \ By, /(480)(Za), We can choose 7 to be
some cutoff function satisfying

H(x/éo

77(33) =1, d(ma,x) > ,U/a/(SO; U(I) =0, d($a,$) < Ma/(250)
Vanl+ V2| < C.
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We also take some 1 < k£ < g — 1. It follows from (2.46) and Theorem A.1 in
Appendix A that

2
[ 15l P
M
2
< Clitg) + B2 [ gk ay,
4k oM

< C(k, bo)
+ 504(134;:1)2 (/aM (wgk+1)/2n)qd8g> 2/q </8M wgd5g> (4—2)/q
< O(k, 8) + Cela=2)/a /M V5 (wED20) 2 du .
Taking € > 0 small, we have
[ 19t Py <

It follows from Theorem A.1 in Appendix A that

q/2
[, s < etmaa) <o
oM M

Lemma 2.6 is established. [ |

REMARK 2.7 Without loss of generality, we can assume that §y in Lemma
2.6 is small enough so that B, /s, (a) C Bay, /6,(Pa)-

Set, for 6 = /10,

2— 5
R; :MQM, i=1,2,3,....
)
Clearly
(2.48) B, /60(Ta) C Br,(Pa) Vi.

Recall that for o /6 < |y| < 2uq/0,
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(2—-n)/2

(o7

(2.49) <paly) <OpE™2 g9 < g < Cug’g.

We can choose some smooth cutoff function 7; satisfying

{m(y) =1, |yl > Riyr; mi(y) =0, |y| <R

[Vgnil < C2,  |Vimi| < C47.

Taking n = n; in (2.46), we have
[T
M
< C4i/ wh L dvg + CQi/ wh ds,
(2.50) M\Bg, (Pa) ! OM\Bg, (Pa) I

k+1)2
L G+ 1) / Wi s,
k OM\Bp, (Ps)

It follows from (2.48), (2.49), and Theorem A.1 in Appendix A that

3 2/p
{/ (w& +1)/2m)p dvg}
M\Bg, (Pa)

(2.51)
=¢ M\B (P)’Vé(w&k+1)/277i)\2d%’
R; Ll
{/ (wékH)/Qm)qug] 2/q
(2.52) OM\Br, (Pa)
<Cf IVl ) g
R; o

Using (2.50), we can derive from (2.51) and (2.52) that

2/p
[/ wkp/2 dvg]
M\BRZ'+1 (P()/)

253) <c4 / witt dvg + C2° / wkt dsg
M\BRg, (Pa) OM\Br, (Pa)
k+1)2

+ Clk+1)° / wl T sy

k OM\Br, (Pa)
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and

2/q
[/ wik1)a/2 dsg}
OM\Br, ,, (Pa)

Q54 <c4 / wEt dvg + C2 / wit ds;
M\Bg, (Pa) OM\BRg, (Pa)
2
+ Clk+1)” / wl 1 s, .
k OM\Bp, (P)

Set ro = so/(q — 2) where s is given in Lemma 2.6. It follows from (2.47)
and Holder’s inequality that

/ wgflJrk dsf)
OM\BR, (Pa)

= wi 2wkt ds,
(233 /aM\BRi (Pa) ’

(ro—1)/ro
< C(/ wE+Dro/(ro=1) ds§> '
8]V[\BR,L- (Pa)

It follows from (2.53), (2.54), and (2.55) that

2/p 2/q
[ / w2 d%] N [ / a2 d%}
M\BRZ‘+1(P0¢) 8M\BRZ+1(PQ)

2.56) < C4"/ wET dvy + C2"/ wkt ds,
M\BR, (Px) OM\Bg, (Pa)

2 (ro—1)/m
+ O(k + ].) |:/ w((lk+1)’l’0/(7‘071) dsg:| 0 0'
k OM\Bp, (Px)

By setting 3 = q(ro — 1)/(2rp), it is easy to see from sy > ¢ that § > 1.
Since we can take sg close to ¢ from the beginning, we can assume without
loss of generality that 5§ < p/2. It follows from Holder’s inequality, (2.48),
and (2.49) that

1/8
(2.57) [ / wkF+D8 d%}
M\BRi+1 (Pa)

2/p
<C [/ w(F+p/2 dvy
M\BRH_l (Pa)
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and

(2.58) wrtt ds,
OM\Bp, (Pa)
< [ / Wk DR/ (o) g
OM\ Bz, (P)

Set qo = 2ro/(ro—1) < ¢, i = Bgi—1 = "¢, and p; = ¢;(ro—1) /1o = 23",
where ¢ > 1. Taking k = p; — 1 (¢ > 1) in (2.56) and using (2.57) and (2.58),
we obtain

(ro—1)/r0

lallp, s ansg,,, () T 10allg, o0 e, , (P
, C .
< (084 255 ) (10l + 100 a0 )

Since 5 > 1, we have a? + b8 < (a+ b)ﬁ for all a,b > 0. It follows that

)1/pi+1

Pit1 Pit1
(Ilwal P M\B,,, (P T 10l oanpy,  (p)

< Di DPi 1/1?1
< (”wa”pm,M\BRM(Pa) + ||wa||q¢+1,aM\BRM(Pa))

; Cp% 1/pi
: <C4 +p-—1> <” Wally, M\BE; (Pa)

(3

(2.59)

. 1/p7,
+ ||w0£||§;3M\BRi (Pa)) '

It is easy to see that

2\ l/pi _ . .
(4B ) T <ot + 2809 < 0V 4 )50,

Thus

o0 . 2\ 1/pi
H<C4"+&> <(C< .
i=1 pi—1
It follows that
1/(28)
28
“wa"pi+1:M\BRi+1(Pa) S C(Hwaupl,M\BRl (Pa) Hwqul OM\Bg, (Pa)>
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Sending ¢ to oo, we have
(2.60) \|waHL°°(M\BQM/5(Pa)) <C(9).

It is easy to see that inside By, /s(Pa), [y| < Cjiq. Therefore, it follows from
(2.41) that Yy € By, /s(Pa) : paly) > C'*lua_(n_Q)ﬂ. It follows that for all
(TS BZua/6(Pa>’

@.61) W = -2 < Oul 2 Pug = Ctg fta(ta) < C.
Pa
Proposition 2.4 follows from (2.60) and (2.61). |

3 Balance Checking via Pohozaev Identity

In this section, we derive a contradiction by using the Pohozaev identity to do
a balance checking in a ball centered at z,, of radius 1/a. The upper bound
obtained in Section 2 plays a crucial role. For n = 3, it is subtler since we need
to obtain an appropriate lower bound of u, in order to reach a contradiction.
This lower bound is obtained in this section by use of the maximum principle.

By choosing an appropriate coordinate system centered at x,, we can as-
sume without loss of generality that z, = 0, g;;(0) = &5, Bf (0) ¢ M, and
{(,0) : |2'| < 1} C OM.

Let Ro, = 1/(pta), ha = gij(pa) da* da? in By, (0), and

Ua(x) = D200 (pox)  for x € BERQ (0).

It follows from (2.22) and (2.2) that R, — oo as a — 00, and 7, satisfies

Ap,Va =0 in B (0)

3.1 8’31—1;““ = &0 — apala  on {(2/,0) : |2/| < 10R,}
0,(0) =1, 0<v,<1.

Clearly

(32)  |hg(x) = 87| < Cluaz|, T(x)| < Ca  in Bgp, (0,

where Ffj is the Christoffel symbol of h, and C' is, as always, some constant
independent of a.
As explained in Section 2,

(3.3) Jim [[Ta = vl 7y, =0 YR >0,
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where v is the function defined in R’} given in (2.25). It is not difficult to see
from Proposition 2.4 that

C

(3.4) Ta(z) < T

for z € BERQ (0).

We need some further estimates on v,.
PROPOSITION 3.1 Foralla > 1, x € BEQ(O), we have

C

‘V@a(l’)’ S 1+ ‘$|n—1 5

V0 ()] <

where |V, | = doij=1 |02,/ 02027 | and C' is some constant independent
of a and x.

PrROOF: It follows from (3.3) that
Vi (2)| < C, |V, (x)] <C in Bf(0).
So we only need to show Proposition 3.1 for |z| > 1. For all 2y € BEQ (0)\

BT(O), set R = ]a:0|, 'l](.%') = R”’zﬁa(Rx), and f]w@;’) = (ha)”(Rx) It
follows from (3.1) that

Ay =0 in B (0) \ Bl+/5(0)
%g_yu = R Y(&,08  (Re) — apiaa(Rz))  on {(2,0): } < |2'| <5}.

On {(2/,0) : £ < |2/| <5}, we derive from (3.4) that

Ogt

ov

= |R" (&L (Rz) — apta¥a(R))| < CR™' + CapaR < C.

It follows from standard elliptic estimates that for some 0 < 3 < 1,

(3.5) ]| g gy < C-
1/
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and noticing (see (3.5))

||£ R uq I aMaRuHCg B+\Bl/4) — C
we have, by standard elliptic estimates, that
(3.6) vau”Cﬁ W) <C.
Therefore
_ _ pl— ~ (X0 1— C
Vi) = B[ V3 ()| < Cleol' ™ < ey

which gives us the gradient estimate.
Also, from (3.5) and (3.6), we know for some 0 < 3’ < 3,

[€aR™ gt — O‘MaR“Hcl B ( B+\B1/3) <C.
Thus by standard elliptic estimates
IVl (BRBT,) = <C,
which gives us
3, Balwo)] = B [0 (20| < Claol " < T
: R (1 + [wo[™)
We have, in view of (3.2), established Proposition 3.1. |

For n = 3, we need to obtain an appropriate lower bound of ¥,. Clearly
one can also obtain lower bounds for n > 4 by the same method, but since
we do not need it for the application in this paper, we omit it.

PROPOSITION 3.2 For n = 3 and « large enough,

1 -
v > Bt
Ua(l') e C(l 4 |$’) Va € Rfl)/4(0)’

where C' > 0 is some constant independent of o
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PROOF: In view of (3.3), we only need to prove the above estimate for
|x| > 20. In the following, « is always assumed to be suitably large. Let
z=1(0,...,0,1) and

1 1
[z =2 RY?|z — 7|12

Go(z) =

in BR(%/3 (z) \ B2(7) .

It is easy to see that

! < Go(x) < 2

in BR}X/:‘)(.f) \ Bg(i') .

2|z — z| | — Z|

From (3.2) we have that in B;l/g (z) \ B2(7),

A 1 S 1
ha = )
1/2|JJ j|1/2 CRé/2|ZL' —i’|5/2
Ah ! — S CM? 5
*\ |z — 7| |z — Z|?

where B 1/3 ={zeR}:|z—z|< R1/3} It follows that Ay, G4 > 0.
13

Also, it follows from (3.2) that for all z = (2/,0), 1 < |2/| < Ry
(1 Yy 1
ov \|lx—z|) ~ Clz—z

Oha ! < ¢
ov 1/2’3; zv2 )|~ Rflx/4|x—i‘|3 '

Therefore, using (3.4), we have, for all z = (2/,0), 1 < |2/| < Ry

O c 1
o > .
oG 2 ~pa ey T o —ap 0

1/3

_aua@a —

We will use the maximum principle on A = {x e R} : 10 < |z —
7| < R Let & = 9AN {w, = 0}, Ty = dAN {|Jz — 2| = 10}, and
Y3 =0ANn{jz —z| = Ré/?’}. Choose 0 < 7 < 1 small enough such that
TGy < Uq on Xg. Define H, = 7G,, — maxy, (7G4 ); then

Aha(@a_Ha) <0 inAd
—H,>0 on Yo U X3

O, (Da—Ha
% >0, on X .
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It follows from the maximum principle that
Vo > H, in A.

Consequently, for all x € BJ;/‘* (0)\ B, (@),

Cr Cr Cr
Vo > H, > — — > — .
[ (-TJ) el (l‘) |$—$| Ré/g 2’$—$‘

Proposition 3.2 is established. |

For convenience, throughout the rest of this section we set I'y = aBEQ 0)N
{(2/,0) : 2’ € R"'} and Ty = 9B}, (0) N{(z',2y) : n > 0}. We always
use dV for the volume element of the standard Euclidean metric, dS for the
surface element of the standard Euclidean metric, v for the unit outer normal
vector of the corresponding surface with respect to the specified metrics, and
- for the inner product under the standard Euclidean metric. The balance
checking via the Pohozaev identity will be performed in BEQ (0).

The following identity can easily be verified (see [22]):

20T (V, - ) = div[2(Vi - £) Vs — |Va|22] + (n — 2)|Via|? .
It follows that

n—2

(3.7) / AoV - 1) dV — / |V, |* dV
B, B},

Ro

1
- _/ Aiv[2(VEn - )V — |Via|22] dV |
2 B+

Rq

Integrating by parts, we have

L / div[2(VT, - ) Ve — |VUa|?x] dV
2 B;a
1
:—/ 2(Voa - ) (Vi - 1) — [Va2(x - )] dS.
2 dB},

It is easy to check that

Ot \ 2

i i ()" Il on I’
Ve - x)(Vig - V) = _ _
Wi DVt )= (Do ) 22 onty
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and
|z| on I'y
TV =
0 only.
Therefore
1
- / div[2(Vg - 2)Via — |Via|*x] dV
2 B+

n—1 )
Bva 87)04 ava x
@ =, (sz x) o, [’ () 5w
n—1 _ _ ~ )
— '6’()& % M % B .,
N /1“1 (;%aﬂfi) ov +/I‘2 9 [( 3y> |OtanTa | ]dS,

where O, denotes the tangential differentiation on I's.
On the other hand,

9
/ |V0a|? = —/ VoAl +/ iy
B} B OB}, v

Rq Rq

Therefore,
n—2

|V, |* dV

AUy (Vg - )
Bf. Bf.
o n—2 _
= Aty (Vg - x)dV + —— AUy Uo dV
B+ 2 B+
Ro Ro

n—2/ _ 0Uq
— Vo—— -
2 JoBt “ ov

Combining (3.7), (3.8), and the above, we have

-2

+
BRO

(3.9) / At (Viw - 2) o AT AV
Bf.
- J(Rou ’l_)oz) + I(Rom ﬁa) y

where

J(Ry, Vo) = %/m{

n—1
I(Ra,00) = = /{ (leaﬁi) O (n_Q)a;;_ }ds

2 ov
ey |x| — |8tanva| x| + (n — 2)— Sy }dS

ov
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Replacing Av, in (3.9) by

Av, = Aha@a — (hg — 6“)81-]'% + hijrk-akfio“

o 1)
we have
. -2
— / (' 03V0) Ap, Vo AV — n / VaAp, Vo dV
B;a Bga
+ / (% D0 (T — §9)Dhy0 AV — / (210470 (WITE, By 50) AV
Bf B

Ra Ra

—9 g iy -2 iy
+ 2 / G (h — 610,500 dV — = / Vo (W T 000 AV
2 B;; 2 B]Jg

= —J(Ra, T)Oc) - I(ROMT)OC) ’

where 0,0, = Z?:l 2;0;Uq, and so on, here and in the discussion below. So
far we have not used the equation of v,. Now we use equation (3.1) satisfied
by ¥, and obtain

(3.10) A(ha, Vo) = —J(Ras Vo) — I(Ra, Ug)
where

A(ha, 0q)

/+
BRa

—9 . . -2 .
+ n / Vo (W — §9)0;j00 AV — n 5 / @a(hfgrfj)ak@a A
B B

2 +
Ra

(%O (T — 69)yy0 AV — / (210150 (HITE, By 50) AV

+
BRa

+
Ra
Using (3.2), we have

A(ha,z‘za):O</B+

R,

+o(/B+

R

+o(/B+

R,

+o</B+

R,

Lo |Z|? |V Ta| | V04| dV)

fhe || ywa|2dv>
(3.11) o

fe| | Te | V2T dV>

JiaTa| Vg dV)
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We simplify I(R,,7,) by using the equation of 7, (3.1). It is easy to see
from (3.2) that
Oh,, Va ov

- _ / x
5~ 5 + O(pal®'| |VUa]) onTy.

It follows that

(3.12) 2I(Rq, o)

n—1 _ _ _
= 9 %_UO‘ _ Oha Vo
_/Fl{2<§ xl&m) 5 +(n—2) 5 va}ds

i=1

‘o ( [ 1 l#/? (950 + a2 |wa|1ds) .
Iy

Using the boundary condition of 7, in (3.1), we have

n—1
07, 3ha (0 6ha Vo _
/Fl {2 (2xax> 5ot (n-2)=5 va}dS
=oas
= 2 a_q_l - aVa % -
/Fl{@va O‘““)@”f@xi)

+ (n - 2)(60163;1 - aﬂava)va}ds

2(n—1
__An-b) £a04 dS + (n — l)aua/ o2 dS
q I I
2
+ - favgx|dS—/ Q2| z|dS
q Jor, ar'y

+(n—2) [ &uvldS—(n— 2)oz,ua/ o2 dS
I Iy

2
= a,ua/ o2 dS + p EaUL|z|dS —/ a2 x|dS .
I

8F1 BFI
Thus
I(Ry,74)

_ QHa 2 o 52
(3.13) =3 /Fl v5,dS + O</8F1 (vd + oz,uava):ddS)

+0 (/ (110 |72 |VTa|® + pia |2 Ta VO] dS> .
Iy
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Clearly
(.14) J(Ra,aa>=0< / <|xr|vaa|2+@awar>ds).
T2

In view of all the above estimates, we rewrite (3.10) as the following
Pohozaev-type identity:

oz,ua/ o2 dS
1N

_ o(/ o |2 [V5a] [V20] dv) T 0(/
Bt Bt

R R

+O</ ,uaa:|va|v2va|dv> +O(/
Bt Bt

(3.15) Rao R
4+ o(/ (2] [V5a|2 + ﬁa\Vﬁa])dS)
'y

+0</ (@gmua@g)\xyds)

oy

+0( / [ua|x'\2|w2+ua|x'vamuds).
I

Lo | 2] ywa\?dv>

oo | V| dV>

We will derive a contradiction from (3.15) by showing that the left-hand
side is much larger than the right-hand side for o large.

LEMMA 3.3 For n > 3, there exists some constant C' > 0 independent of o
such that [, % dS > 1/C for all o > 1. Moreover; for n =3, [. TadS >
(log Ry)/C for all a > 1.

PROOF: We only need to prove the lemma for large a. It follows easily

from (3.3) that
1
/ v2dS > —.
r, c

For n = 3, it follows from Proposition 3.2 that

2
/vgdszl/ ( ! ) dg > 108 fta
Iy C aRiﬁBR1/4 ]‘+|x‘ C
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LEMMA 3.4 The following estimates hold:
/ o |a]dS < CRL™ = Clapia)™",
o

/ a2 x| dS < g R3™,
or'y

CuglogRy, n=3

o |21 [V0a]? + pa |2/ 00 |VTa|)dS <
[ Gl 1952 4 o || [T < § e 08T 20

/ (2] [V5al? + B [V5a])dS < Clapta)2,
s

CuqlogR, n=3

ol #? V0| V20| + palz] |[VIa|*)dV <
[, alol? 19l [9200] ] (9o )y < e 08 Fe M 20

Ra
CuglogR, n=3

ol Vo | V200l + pa¥alVa|)dV <
[ (halel 5o [9280] + ot V) { e

Rq

PROOF: These estimates follow easily from (3.4), Proposition 3.1, and
some elementary calculations. |

PROOF OF THEOREM 0.1: We draw a contradiction from (3.15) by using
Lemmas 3.3 and 3.4 because the left-hand side is clearly much larger than the
right-hand side in (3.15) as « tends to infinity. |

Appendix A

Let (M, g) be a smooth, compact Riemannian manifold of dimension n (n > 3)
with boundary. In this appendix we present some weighted Sobolev embedding
inequalities that should be well-known. We include a proof for completeness.

THEOREM A.1 There exists some constant C = C(M, g) such that for all
ro € M, 1 >0, u € HY(M),u(x) = 0 Vd(xg,z) < i, we have

Ju(z) 2/p L/ |V gu(z)[?
A < LR Sk S B
(/M d(zo, )" Aoy =C v d(xo, )24 g

Ju ()9 2/ L/ | Veu(@)]?
- <
(/E,M d(zo, 7)2n—2 dsg ¢ d(z0, ) 2n ———van—1 Qg ;

where d(xq, z) denotes the distance between x and x.

and
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Theorem A.1 in the case xg € OM follows immediately from Lemma A.2
and Lemma A.4 below. The general case can be proved in a similar way.

LEMMA A.2 Forn > 3, there exists some constant C = C(n) > 0 such that
for all w € HY(B{ (0)), u = 0 in an open neighborhood of x = 0, we have

p 2/p 2
(WY o f e,
B+o) |zl B |7l

< / u(x’,O)\qu/>2/q<C / Vu(@)P
<1 |2/[*2 = et |zt

where x = (z',2,), p=2n/(n —2), ¢ =2(n—1)/(n —2), B (0) = {z €
R™: |z| < 1,2, > 0}.

and

PROOF: It follows from the hypothesis that for some p = p(u) > 0,
u(z) =0 V|z| < p, z, > 0. Consider

v(y) =uly/lyl?), |yl >1, yo>0.

Clearly
v(y) =0 Viyl > 1/, yn >0,

and, for some C(n) > 0,

|u(z)[P /
dr =C(n v(y)|P dy,
/Bmo) | ]2 () {|y\21,yn20}| W

2
[ a—co | V() dy.
B (0) || {ly|=1,yn >0}
' 0)]e
/ %dw' = C(n)/ lv(y’,0)|7dy’ .
<1 |zl ly'|>1

It follows from standard Sobolev embedding theorems (with appropriate ex-
tensions of v to |y| < 1) that

2/p 2/q
( / |v<y)|pdy) i ( / |v<y’,o>|qdy’)
{ly|>1,yn>0} ly'|>1

<Cn) / Vo(y)2dy.
{ly|>1,yn >0}

Lemma A.2 follows immediately. |



460 Y.Y. LI AND M. ZHU
The following corollary is immediate:

COROLLARY A.3 There exist some constants 6 = 6(M,g) > 0 and C =
C(M,g) > 0 such that for all zo € OM, uw € H*(M), uw = 0 in an open
neighborhood of xy we have

D 2/p q 2/q
(/ \U(x)\% dvg> n (/ - \u(x)\%_Q dsg>
B} (z0) d(@0, ) OMNBY (z0) 4(Z0,T)

2
S C ‘VQU(Q;)|_4 d'l)g,
B} (x0) d(@0, 2)*"
where By (z0) = {zx € M : d(zo, ) < §}.

LEMMA A4 For 6 > 0, there exists C = C(M,g,6) > 0 such that for all
ro € M, u€ H' (M \ B;/Q(aco)), we have

2/p 2/q
([ weaw) (] uft s, )
M\Bj (z0) OM\B (z0)

< C{/ |V ul* dv, + / u? dvg} .
M\By, (w0) By (20)\ By, (x0)

PROOF:  Suppose the contrary of Lemma A.4, namely, that for some 6 >
0, there exists a sequence of points {z;} € M, {u;} € H(M \ Bgr/z(x,-)),
satisfying

2/p 2/q
(A1) (/ \ui|pdvg> + (/ |ui|qug> _1
M\BS (z) OM\BT ()

and

1
/ |Vgui|2dvg+/ u? dvg < .
M\B{, (w:) By (2:)\By () ’
It follows that
ill a7 i) < ©

and

(A.2) lim { / |V gui|* dvg + / u? dvg} =0.
i—00 M\B;r/2(l"z) B;r(xl)\B;r/Q(xl)
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After passing to some subsequence, we have that u; converges weakly to u
in H'(M \ B(;F/Q(xi)). In view of (A.2), u = 0. It follows from the compact

embedding of H! into L? that

/ uf —0.
M\B{, (x:)

This, together with (A.2), yields

lill g iy = O

which contradicts (A.1) because of the Sobolev embedding theorems. Lemma
A.4 is established. [ |

Appendix B

For n > 3, let B denote the unit ball in R", and let g = g;; (x)da?Z dzd be a
CZ%-metric on B with g;;(0) = &;; and gifz (0) =0 forall 1 <i,j,k<n.
Let K € L>®(By).

PROPOSITION B.1 There exists some constant 71 > 0 depending only on
n, |gijllc2(pyy, and || K| (p,) such that for all 0 < T < 7, there exists
some function G(y) = |y|*>~" + E(y) satisfying

(B.1) {‘AgG + K(y)G = n(n—2)wnéo in B; \ {0}

G=0 on 0B, ,

where wy, is the volume of the unit ball in R™ and E satisfies the following:
For all 0 < € < 1, there exists some constant C(g) depending only on ¢, n,
HginCz(Bl)’ and HK||L°°(Bl) such that

" E B ()| + [P TEIVEW) < Cle) Wy € Br, n>4,
and
yIFHE(y) — EO)| + [yFIVE(y)| < C(e) Vy€ By, n=3.
REMARK B.2 In fact, such G is unique.
PROOF: The existence of 7, > 0 is well-known; see, for example, [7].

Clearly (B.1) is equivalent to

(B.2) {‘AgE +K(y)E=0(]y*™) in B,

E=—7r2T" on 0B, .
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Since |y|>™™ € L"(B,) for all r < n/(n — 2), it is well-known that (B.2)
has a unique solution E € W27 (B;). It follows from the Sobolev embedding
theorems that

TS E
and
(B.3) [Elcr-<p,) <Ce) YO<e<1l,n=3.
For0<r§T/5,x€Ao:{x:%§]x\§5},set

n—2

Br(@) = {:n*gzz) _ E(0)) Z i ;L

Then E; satisfies
—AWE(z) + K(rz)r’Ey(x) = O(r?) x € Ay,

where |O(r?)| < Cr? with C independent of 7 and h = h;j(z)dz’ da? =
gij(rz)dz'dx?. For n > 4, for all 0 < ¢ < 1, we can choose some s; =
s1(e) < n/(n —4) such that

1B 21 (ag) < P B N poa (s, < Cle)r? .

Using the equation of E; and applying the bootstrap method finite times (using
the L? theory of elliptic equations and the Sobolev embedding theorems, see
e.g., [17]), we have

|B1(2)| + [VEL(2)] < C(e)r® ™, 5 <z <2.

N =

Consequently,

n— n— — T
" E®W)| + [y" T VE()| < CE)yl* =, |y < s

This establishes Proposition B.1 in the case n > 4. For n = 3, we know from
(B.3), for all 0 < € < 1, that
|E(x)] < C’(e)r2’€ Vo € Ap .

It follows from the equation of F; and standard elliptic estimates that

1
|VE;(x)] < C(e)r?~® V5 < el <2.
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Consequently,

yl1E(y) — EQO)|+ [y*IVE(@y)| < Ce)lyl*~=, |yl < %

Proposition B.1 is thus established. |
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